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Shapes of Growing Droplets A Model 
of Escape from a Metastable Phase 
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Nucleation from a metastable state is studied for an Ising ferromagnet with 
nearest and next nearest neighbor interaction and at very low temperatures. The 
typical escape path is shown to follow a sequence of configurations with a 
growing droplet of stable phase whose shape is determined by dynamical con- 
siderations and differs significantly from the equilibrium shape corresponding to 
the instantaneous volume. 

KEY WORDS: Stochastic dynamics; Ising model; next nearest neighbor 
interaction; metastability; crystal growth; first excursion. 

1. INTRODUCTION 

Relaxat ion to equi l ibr ium of a system close to a f irst-order t ransi t ion is 
a p rob lem whose r igorous  t rea tment  has recently been receiving a lot of 
at tention,  tt4'~5't~':-'~~ In part icular ,  it is of interest to grasp the escape 
pa t te rn  of a system relaxing from a metas table  s tar t ing configurat ion 
toward  a stable equi l ibr ium state. The escape is through the format ion  of 
small  drople ts  or  crystals of stable phase that  are stabil ized once they reach 
a cer tain critical size. Here, we are interested in the shape of such a crystal  
dur ing the process of growth. It seems that  the mechanism of growth 
depends  on the size of the crystal. While  for large supercri t ical  crystals 
one has to take into account  the t ranspor t  of mat ter  and heat  a round  the 
crystal,  the growth of tiny subcrit ical  crystals should be governed in a more 
direct way by the ins tantaneous  microscopic dynamics.  
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Our aim in the present paper is to discuss the shape of a growing 
crystal modeled by the Ising model. Namely, we consider the Ising model 
with ferromagnetic nearest neighbor and next nearest neighbor interactions 
in the presence of a small positive external field. Starting from the con- 
figuration - 1 ,  minus spins at all lattice sites in a fixed finite volume under 
periodic boundary conditions, we study the relaxation pattern of the 
stochastic process yielded by a standard Glauber dynamics. In particular, 
we are interested in the typical configurations during the first excursion 
from the configuration - 1  to the configuration + 1 with all sites occupied 
by plus spins. We present a detailed description of the escape pattern in the 
asymptotic region of vanishing temperatures. It turns out that in this 
asymptotics (and in a finite volume) one can consider a single droplet of 
plus spins, playing the role of the crystal, that grows in a very particular 
manner to the critical droplet. 

At first sight one could suppose that growth is through crystals that 
minimize the surface tension under fixed instantaneous volume/m The 
shape of such crystals is the equilibrium shape yielded by the Wulff con- 
struction, t~6"~3'4) For our model at low temperatures the Wulff construction 
can be easily shown to lead to a shape that closely follows an octagon with 
coordinate and oblique sides proportional to the nearest neighbor and next 
nearest neighbor interactions, respectively. The main result of the present 
paper (Theorem 3) asserts that the typical growth of subcritical crystals is 
through a sequence of particular shapes that significantly differ from the 
equilibrium Wulff octagons. This is in agreement with a similar resul(a) 
concerning the Ising model with anisotropic nearest neighbor interaction. 
Notice that the fact that we are considering the asymptotics of vanishing 
temperature with fixed (small) external field is technically crucial for our 
proofs. It would be interesting (and difficult) to extend this type of result 
to the region of vanishing external field under a fixed (small) temperature 
or to the region where both external field and temperature vanish in such 
a way that their ratio is fixed. The escape time and asymptotics of the 
metastable state in the latter region have been recently discussed ~5~ in the 
case of the nearest neighbor d-dimensional Ising model. 

We believe that a difference between dynamical and equilibrium shapes 
would occur already for the simplest nearest neighbor Ising model. But 
while it would reveal itself only as a higher-0rder effect at low temperatures, 
for the model with an additional next nearest neighbor interaction dis- 
cussed here it appears already in the first order of the low-temperature 
asymptotics. The main effect is thus captured in a situation that is suf- 
ficiently simple to be studied in a rigorous way. 

The main principle according to which typical growth patterns are 
determined can be summarized, in a nontechnical and simplified manner, as 
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follows. The instantaneous shape of a crystal determines its (microscopic) 
energy and the growth can be thought of as a path through this energy 
landscape. Let us first discuss the behavior in the neighborhood of a con- 
figuration Q at which the energy attains a local minimum. Considering the 
standard Glauber dynamics, we can pose the following question: what is the 
escape path from the "basin of attraction" ,~(Q) of the local minimum Q? 
The answer, in the general context of reversible Markov chains with trans- 
ition probabilities exponentially decreasing with inverse temperature fl, is 
not surprising. Namely, general arguments based on reversibility lead to 
the conclusions that: 

(i) The most probable way out of ~(Q.) is through a minimal saddle 
point S on the boundary aM(Q) of ~ (Q)  [the configuration of minimal 
energy among those that are outside ~ (Q)  but are connected by a single 
spin flip with a configuration in M(Q)]. 

(ii) The typical path is through a sequence of configurations "against 
the drift," namely, the time reversal R~o of the path co starting at S and 
descending to Q. 

The task of describing the global escape from - 1  to +1 is com- 
plicated by the fact that one is moving through an energy landscape with 
many local minima. The above observation about the escape from the 
basin of attraction of a given local minimum has to be used for different 
minima and combined into a global picture. Local minima are yielded by 
certain particulary simple shapes (general octagons in our case) with all 
faces completely filled up (no microscopic holes or other perturbations on 
facets). The probability that, starting from a given local minimum Q~ 
the crystal grows (or shrinks) to a neighboring local minimum Q2 
[microscopically by adding (or erasing) one microscopic layer to (or from) 
one or several faces of Qt]  is determined by the height H ( S ) - H ( Q , )  of 
the barrier between them. We have here in mind any configuration S at 
which the energy on a path from Q~ to Q2 reaches its maximum, however, 
with the path chosen to minimize it. In terms of this energy of the barrier, 
the considered probability is proportional to exp[ - f l {H(S ) -H(Q~)} ] .  
Having this "microscopic building block," our task is to determine the 
probability of reaching the global saddle point (critical nucleus) of relative 
energy F (with respect to the starting metastable configuration - 1 ) .  
Multiplying naively the probabilities corresponding to passages through 
subsequent local saddle points would yield a gross underestimation of this 
probability expected to be of the order e -at  (the typical time of escape 
from the metastable state is expected to be ear). 

To get a more accurate evaluation we have to take into account also 
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the following circumstance. A crystal at a local energetic minimum is 
likely to "stay" in its basin of attraction for the time of the order 
e x p [ 3 { H ( S ) - H ( Q t ) } ] ,  where S is the lowest local saddle point through 
which the crystal can escape from the local minimum Q, (not necessarily 
in "the direction of" Q2). Being thus sligh~tly more patient and allowing the 
crystal to pass through the (higher) local saddle point S (on the way to Q2) 
starting at any randomly chosen time before e x p [ ~ { H ( S ) - H ( Q I ) } ] ,  we 
get the probability of the order 

ep { H (s )  - H( Q=) } e - -  fl{ H(S) - -  H(Qt)} : e/~ { H(S~ - H(.~)} 

Combining now these contributions, we have a chance to get a correct 
estimate of the order e -a t  for a global path once it meets the obvious local 
condition. Namely, for each visited local energetic minimum, the path (or 
rather a class of paths defined by a sequence of visited local minima) has 
to enter its basin of attraction through the lowest possible local saddle point. 
This is a severe restriction on possible paths (all others being much less 
probable) and using it we get the most probable growth patterns men- 
tioned above. 

Unfortunately, the technical details to achieve the above strategy are 
rather complex. 

The paper is organized in the following way. In Section 2 we introduce 
the model, the dynamics, and the notation concerning octagonal shapes 
that yield local minima of the considered interaction (Lemma 2.1 ). Then we 
summarize our results in Theorems 1 and 2 (asymptotics of the hitting time 
to the configuration +1)  and Theorem 3 (describing the sequence of 
droplet shapes on the escape path). 

In Section 3 we begin the discussion of "the movement in the energy 
landscape" by a detailed investigation of passages between neighboring 
(octagonal) local minima. An important role is played by a characteriza- 
tion of different basins of attraction and saddle points on their boundaries. 
A closely linked fact is the existence of two different important time scales 
in the problem. The shorter one is a typical time needed for a passage from 
a particular octagonal local minimum to a close octagon with identical 
circumscribed rectangle. The height of the corresponding saddle point is 
proportional to the value of the next nearest neighbor coupling. Only when 
passing to an octagon with larger circumscribed rectangle does one have to 
overcome a saddle point whose height is proportional to the nearest 
neighbor coupling and the typical passage time is correspondingly longer 
(We are supposing that the nearest neighbor coupling is stronger than the 
next nearest neighbor one.) In terms of this longer time scale we observe 
a growing octagonal shape whose oblique sides are "breathing" around 
"equilibrium positions" when observed on a shorter time scale. 
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The global saddle point, a configuration minimizing the maximal 
energies on paths from - 1  to +1,  is discussed in Section 4. For its 
investigation it is useful to introduce a "global basin of attraction of the 
configuration - 1 , "  respectively its subset ~t characterized by the fact that 
starting from a configuration in d ,  a typical path first hits the configura- 
tion - 1 before reaching the global minimum + 1. The goal is to choose the 
set ~ small enough to satisfy this condition but large enough to make the 
minimum on its boundary coincide with the global saddle point. 

The results of Section 3 and 4 are than merged in Section 5 into the 
proofs of Theorems 1-3. The basic estimate in getting a typical escape time 
is the lower bound on the probability to reach a global saddle point. Here 
we use the stategy suggested above, taking into account "resistance times" 
characterized by the minimal saddle point on the boundary of the local 
basin of attraction of an octagonal local minimum configuration. The 
resulting local condition determines the optimal escape path and is respon- 
sible for a particular dynamically optimal sequence of shapes mentioned 
above. 

The results of the present paper, as well as those from ref. 8, were 
announced in ref. 9. 

2. SETTING A N D  RESULTS 

We will consider a discrete-time Metropolis dynamics for a totally 
ferromagnetic two-dimensional Ising model with nearest neighbors and next 
neighbor interaction. 

The choice of a discrete- instead of a continuous-time evolution is made 
only for the sake of simplicity of the exposition. It will appear clear to the 
reader that, with some minor changes, all our results can be extended to 
the continuous case. Our dynamics will be given by a Markov chain whose 
space of states is F =  { - 1 ,  1}A where A is a two-dimensional torus, 
namely, A is the square {1 ..... M} z with periodic boundary conditions. 3 

A configuration cr is a function 

a: A--* { - 1 ,  1} (2.1) 

i.e., G ~ F =  {--1, 1} A. The value ~(x) is the spin at the site x. The energy 
of a configuration cr is 

H(~)  = Y h -~ ~ ~(x)~(y) -K  ~ ~(x)~(y)--~ ~ ~(x) (2.2) 
< x ,  y ) = A <( x ,  y )) ~ A x ~ .4 

s For instance, x = (M + 1, b) is, for every b <~ M, identified with x '= (1, b) and so on. 
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where we suppose that K, J, h >0 .  Here (x,  y )  denotes a pair of nearest 
neighbors in A: I x - y ]  = 1 and ((x, y ) )  denotes a pair of next nearest 
neighbors in A: I x -  y] = w/-2. Our  dynamics is defined with the help of the 
following updating rule: 

Given the configuration a at time t, we first choose at random (with 
uniform probability) a site x~A. Then we flip the spin at the site x with 
probability 

exp{ -fl[AxH(a)] + } 
where 

with 

A.,.H(a) = H(a  (')) -- H(a) 

~ a( y ) whenever 

cr(")(y) = / . - a ( x )  whenever 

Here, for every c e R we denote [ c ]  + 
perature. 

The transition probabilities are then given by 

p(a ~ q)= {(ol/lAI)exp{--fl[A.,H(a)]+ } 

The space of the trajectories of our  process is 

~ = r ~ - - - ( { - 1 ,  I}A) ~ 

An element in (2 is denoted by 09; it is a function 

~o: N ~ F  

If 

we set 

03 = 0"0, 0" 1 , . . . ,  f i t , ' "  

(2.3) 

(2.4) 

y : / : x  
(2.5) 

y = x  

= min(c, 0); fl is the inverse tem- 

if q = a (') for some x 
(2.6) 

otherwise 

(2.7) 

The dynamics is reversible with regard to the Gibbs measure in A in the 
sense that 

P(o" -+ ~/) e - ~ m ~ ) -  P(q -+ o') e -/~H('~) (2.8) 

We will discuss the behavior at very low temperatures, Thus it is 
natural to describe configurations in terms of contours. Namely, for every 
a E F consider the union C(a) of all closed unit squares centered at lattice 
sites x for which a ( x ) =  + l .  The boundary  OC of C is a polygon with 
vertices on the dual lattice Z2+(1 /2 ,  1/2) such that in any vertex of the 
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dual lattice an even number  (zero, two, or four) of unit segments belonging 
to this polygon meet. Any connected component  ? of the boundary OC is 
called a contour of the configuration t~. 

It is easy to see that if a configuration a has the boundary  c~C(~r) 
consisting of a single contour  ?, the energy of a is 

H(a)  - H( - l)  = J [Yb - K [A(7)[ - h I/(7)1 (2.9) 

Here 

J = J + 2K (2.10) 

I~'l is the length of y, and II(~')1 is the cardinality (area) of the interior 
I(?)-C(a). Finally, IA(y)I is the number of  corners (right angles) of  y. 
Notice that in the situation like that on Scheme 2.1 we count four corners. 

w ~ ~ / / 1  (~) 

Scheme 2.1 

A contour  ? is said to be isolated if it lies at a distance at least x/~ 
from other contours. 

A relevant role will be played by a particular class of contours that we 
call octagons. An octagon is a closed contour  inscribed in a rectangle R 
with edges parallel to the lattice axes. Call P~, P2, P3, P4 the vertices of R. 
The octagon contains four straight edges with extremes xi, Yi, i =  1 ..... 4: 
(xl, yl)~--PiP2, (X2, y2)~P2P3, (x3, Y3)~-P3P4, and (x4, y4)~P4PI, 
called coordinate edges, and four oblique edges that have a local staircase 
structure with extremes YtX2, y2x3, y3x4, y4xl (see Scheme 2.2). 

X 
4 
P, 

P1 z I Yl P2 

V J-. 

]/3 "~'3 

Scheme 2.2 

z 2 

Y2 
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When referrin~ to a stable octagon we suppose that Ixi-Yil>~2,  
lYe-x~+ll >1 , /2 ,  i =  1 ..... 4. When discussing a particular octagon Q, it will 
be useful to introduce 

Lf= I x , -  Y,I, . i = 1  ..... 4 (2.11) 

for the lengths of its coordinate edges; 

1 
li= 1 +----~ ly i - -  Xi+ ll, 

,/2 
i = 1  ..... 4 ( x s - x l )  (2.12) 

for the lengths of its oblique edges; 

Dt = P I P z =  LI +14-- 1 + l  I -- 1 = P4P3= L3 + I3 - 1 + 1 2 -  1 

D2= P2P3 = Lz + Ij - 1 + 1 2 -  1 = P4P1 = L 4 + I 3 -  1 + 1 4 -  1 
(2.13) 

for the lengths of the sides of its rectangular envelope R(Q)= P LP2P3P4; 
and, finally, 

d l =  LI + L4 + 2(14 - -  1 ) = L2 + L3 + 2(12 - -  1 ) 

d2 = Ll + L2 + 2(l~ - 1 ) = L4 + L3 + 2(13 - 1 ) 
(2.14) 

for the distances (in units of 1/x/~) between pairs of opposite parallel 
oblique edges. We will use 

Q(DI, D2, It, 12, 13, 14) (2.15) 

to denote the corresponding octagon. Another way of characterize it is by 
specifying, say, dl, d2, L1, L2, L3, L 4 .  

The previous definitions made no reference to the location of  the 
octagon. Sometimes in the sequel we will consider a canonical location. We 
say that an octagon Q is centered if the upper left corner x~ of Q is the 
point ( - 1/2, 1/2) of the dual lattice (namely, the uppermost left + spin, the 
first in lexiographic order, is the origin). Sometimes when not specifying 
the location of an octagon Q we tacitly assume it to be centered. 

We will often use the same symbol Q also to denote the set of all spin 
configurations a giving rise to a unique closed contour (full of plusses) 
consisting, up to a translation on the torus, of the octagon Q; sometimes 
we write a e Q. We set 

H ( Q ) = H ( a )  for t reQ 
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Clearly, for Q = Q(Dt, D2, (l;);= 1,...,4) w e  have 

4 

H(Q)=2J(DI +D2)-hDID2-  ~ EK(2 6-  1)- �89 1)3 (2.16) 
j = l  

Let us define 

l*=I~h--~+ 1, i.e., h(l*-1)<2K<hl* 

D* = I ~ J ]  + 1, i.e., h(D*- l )<2J<hD* (2.17) 

L* = D * -  2(I*- l )=[2---~] + I - 2 [ ~  

Here [x]  denotes the integer part of a real number x. We suppose also that 
2K/h and 2J/h are not integers. Notice that if r/is defined as 

~=y-(l*-l)=--- (2.18) 

then 2.7/h + 2q is not an integer and 

(2.19) 

We always suppose in the present paper that K<.J/IO and 0 < 7 h < K .  
These are essentially technical assumptions that make the proofs simpler. 
We did not attempt to optimalize them and it might turn out that weaker 
conditions would also work. 

We define a standard octagon as an octagon with 

rain Li>~l* and I:=l*, j = l  ..... 4 
i =  I,..., 4 

In this case we simply write 

Q(D,, D2)= Q(D,, D2, 1", 1", l*, l*) (2.20) 

We call an octagon regular when 

LI = L2 = L3 = L4 = / 1  =/z  = 13 = 14 = / 
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and denote it by Q(/) .  We will only be interested in regular octagons with 
1 ~< 1". For configurations a e Q(D l, D2, II, 12, 13, 14) we often write 

Dj = Dj (a) ,  j =  1, 2 

lj = Is(a), j = 1 ..... 4 

The assumption about the smallness of h made above ensures, in par- 
ticular, that for every spin flip the energy changes at least by h. (See 
Lemma 3.1 in Section 3.) 

The importance of octagons stems from the fact that they yield the set 
of all local minima of energy. 

L e m m a  2.1. Let tr be a configuration whose energy increases under 
every spin flip. Then the set {x, t r (x)= +1 } is a union of isolated stable 
octagons. 

The proof of this lemma will be given in Section 3. 
Given any set of configurations A c F we define the f i rs t  hitt ing t ime 

to A as 

~ =inf{t>~0:tr,  eA} (2.21) 

Sometimes we use the notation P, ( .  ) to denote the probability distribution 
over the process starting at t = 0 from a configuration r/. 

As we mentioned in the Introduction, we shall discuss the asymptotic 
behavior, in the limit fl-o oo, of typical paths of first escape from - 1 to 
+1. We refer to refs. 11, 12, 14, 15, 8, and 9 for a general introduction to 
this problem. Also in the present case, local minima will play a crucial role 
in the description of the transition from the metastable situation to the 
stable one. It will happen, similarly to the case of the nearest neighbor 
Ising model, that small octagons have a tendency to shrink, whereas large 
ones tend to grow. Again, the dynamical mechanism responsible for this 
behavior relies on the competition between the creation of a suitable stable 
protuberance and the erosion of an edge. The main difference here with 
respect to the nearest neighbor Ising model comes from the presence of the 
oblique edges in stable isolated clusters--the octagons. The new pheno- 
menon, namely the growth or shrinking in the oblique direction, is still 
governed by a competition between the creation of a certain protuberance 
and the erosion of an edge. However, three new features should be men- 
tioned: (i) The corresponding time scales are different with respect to the 
appearing in the growth-shrinking mechanism in the coordinate directions; 
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(ii) for sufficiently large octagons, a sort of "equilibrium" in the oblique 
direction is established; and (iii) for "relevant" octagons, the global 
tendency to shrink or grow--to disappear or to invade the whole volume--  
is governed by the size of the "circumscribed rectangle." 

All these mechanisms will be described in the next sections starting 
from the "elementary" events, taking place at microscopic level and involv- 
ing a single spin flip, then analyzing the transitions between neighboring 
minima, and finally considering the global transition between - 1  and + 1. 
A very important role will be played by standard octagons that can be 
considered as the most stable ones among the octagons with a given, 
sufficiently large, circumscribed rectangle (see Section3). The basin of 
attraction of a local minimum will be defined in Section 3 in a natural way 
and neighboring minima, namely the ones with a nonempty intersection of 
the boundaries of their basins of attraction," will be considered. 

To define a saddle point between two neighboring local minima, say Q 
and Q', we consider the minimax 

min max H(a) (2.22) 
o~:Q-  O' oEco 

(where we use 09: a--* ~ to denote a generic path by subsequent spin flips 
starting from rr and ending in r). A saddle point is any configuration # for 
which the above minimax is attained. Namely, considering any r o: Q ~ Q' 
for which the minimum in (2.22) is reached, any configuration r? for which 
max . . . .  0H(a) is attained is a saddle point. 

It will become clear that, for sufficiently large sizes, it is interesting to 
consider not only the jumps between neighboring generic octagons (with 
related basins of attraction and saddle configurations) but also the trans- 
itions between standard octagons Q(D~, D2) with corresponding "domains 
of attraction" (see Section 3) that group together all the basins of attrac- 
tion of octagons inscribed in the same rectangle R as Q(D~, D2). These 
transitions at the "intermediate level" (corresponding to the exit from 
domains of attraction instead of basins of attraction) involve an inter- 
mediate time scale between the one referring to the transition between 
neighboring generic octagons and the global one referring to the transition 
between - 1 and + 1. 

A global saddle point is any configuration 6 for which the minimax 

min max H(a) (2.23) 
c o : - - 1 4  +1 o ' E m  

is attained. Let ~ be the set of all configurations obtained from a stan- 
dard octagon Q(D*,D*-1)  or Q(D*-1,  D*) [D* has been defined in 
Eq. (2.17)] by attaching to one of its longer coordinate edges a unit-square 

822/75/3-4-5 
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protuberance (see Scheme 2.3). We will see that ~ coincides with the set of 
all global saddle points. 

Scheme 2.3 

For any 6 ~ ~P one has 

H ( # )  - H (  - 1 ) - E *  = H ( Q ( D * ,  D *  - 1 )) + 2 Y -  h 

= H ( Q ( D * , D * ) ) + h ( D * - I ) - 4 K  (2.24) 

for the "height" of the global saddle point. 
We shall prove that the first excursion from -_1 to + ! typically passes 

through a configuration from ~P and the time needed for this to happen is 
of the order exp(flE*). 

To present this statement in a formal way, we use f_~ to denote the 
last instant in which tr, = - 1 before ~ +_~, 

f ~ = m a x { t < ~ + ! : ~ r , =  - 1 }  (2.25) 

and introduce 

f ~ = m i n { t > f _ l : t r , ~ }  (2.26) 

T h e o r e m  1 : 

lira P_l(f~,<z+!)= 1 (2.27) 

T h e o r e m  2: 

lira P_! (exp[f l (E* - e ) ]  < 3 + !  <exp[ f l (E*  + ~ ) ] ) =  1 (2.28) 

for every e > 0. 

In addition, we get much more detailed information about a typical 
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path followed by our process a, during its first excursion from - 1  to + 1, 
or, in other words, between the moments f_  t and 3+!. Theorem 3 below 
states, roughly speaking, that with high probability for large fl, the path a, 
sticks to a certain tube of trajectories. A precise definition involves a lot of 
other preliminary definitions and notions and we will ba able to present it 
only at the end of Section 5. There, we will introduce the concept of an 
e-typical path that will be determined in terms of its geometrical properties, 
but also with a specified time of passing through certain configurations. 
For the moment we only say that, roughly speaking, the typical trajectories 
during the first excursion begin by following a sequence of almost regular 
octagons up to an edge 1"; after that the oblique edges stay almost 
constant at the value 1" while the coordinate edges grow, keeping the 
rectangular envelope almost squared, from the value 1" up to a value L* 
corresponding to the critical nucleus. This first part of the first excursion 
can be viewed as a nucleation phenomenon and it involves, in average, 
"ascending" transitions with growing energy. Finally, the oblique edges 
stay further almost constant at the value l* whereas the coordinate edges 
continue to grow, with larger fluctuations, still preserving, however, the 
average squared shape of the rectangular envelope until the whole volume 
is invaded by plusses. This "supercritical growth" is, in average, a descent 
in energy. 

T h e o r e m  3. For every e > 0  one has 

lim P_!({a,},~t~_!.~+!l is an e-typical pa th )=  1 (2.29) 

3. P A S S A G E  B E T W E E N  N E I G H B O R I N G  LOCAL M I N I M A  

To be able to discuss in detail the growth or shrinking of a droplet we 
first introduce some "elementary events," namely, certain particular spin 
flips. 

Notice first that the energy increment when flipping the spin of a 
configuration a at a site x can be expressed in the form 

A.,.H=H(aI"I)-H(a)= []MCj"~(a)+KM~k~(a)+h] a(x) (3.1) 

where 

M~"'(a) = ~ a(y), M~k~'(a) = ~ a(y) 
y :  I x  - y l  = I y :  l y  - x l  = ,/~ 

We are interested in the region of the phase diagram where K is small 
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with respect to Y (next nearest neighbor interaction is a perturbation of 
nearest neighbor interaction). Recall that we are assuming that 

J 
0 < 7h < K~< 1-0 (3.2) 

Then every spin flip leads to a change of energy by a minimal amount of 
at least h. 

Lemma 3.1. Suppose t h a t O < h < K a n d O < K ~ < � 8 9  for 
a single spin flip, 

IAxHl>~h (3.3) 

ProoL Observe that M f  ~, M ~ { - 4 , - 2 , 0 , 2 , 4 } .  By inspection 
one verifies that the minimal value is attained for M s =  MK = 0. �9 

We will consider five particular classes of spin flips at a site x: 

(a) An h-erosion i r a ( x ) =  +1 and M ~ I = M ~ I = 0 .  

(b) An h-recovery if a (x )=  -1  and M ~ =  M ~ = 0 .  

(c) A K-protuberance if a (x )=  -1 ,  M ~ = 0 ,  and M ~ =  -2 .  

(d) A K-erosion if a (x )=  +1, M f l = 0 ,  and M ~ = 2 .  

(e) A J-protuberance if a (x )=  -1 ,  M ~ I =  -2 ,  and M ~ = 0 .  

Notice that according to (3.1), the energy increments in these cases are, 
respectively, 

A,.H(tr) = +h  (3.4a) 

d.~H(a) = - h  (3.4b) 

d~H(tr) = 2 K -  h (3.4c) 

A,.H(tr) = 2K+ h (3.4d) 

A xH(tr) = 2 .7-  h (3.4e) 

For a site x adjacent to an isolated contour, an h-erosion is possible iff x 
is adjacent to a convex angle as in Scheme 3.1a (figures are always drawn 
modulo reflections and rotations). 

+q- 
+ + +1 

Scheme 3.1 a 
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The site x is the central one. Similarly an h-recovery is possible iff x is 
adjacent to a concave angle as in Scheme 3.lb. 

+ [ -  - 
+ + + 

S c h e m e  3 . 1  b 

For  a K-protuberance the situation is necessarily that in Scheme 3.1c. 

+ [ - -  -- 

+ + ] - -  

Scheme 3.1c 

For  a K-erosion it is that on Scheme 3.1d. 

- t - [ -  - 

-t- -I-1 - 
+ + + 

Scheme 3.1d 

Finally, for a J-protuberance it is that on Scheme 3.1e. 

+ 
�9 q- - -  - -  

Scheme 3.1e 

Before discussing the "full dynamics" at nonzero temperature, we first 
consider a deterministic dynamics where only spin flips with decreasing 
energy are allowed. What  we get is actually a certain generalization of 
bootstrap percolation. Consider finite sequences S =  {x~ ..... x ,}  of lattice 
sites. A sequence S is called a sweep if it contains every site from A. The 
sequence S is called standard if it contains at least 

M 2 

( 8 J +  8 K +  2h) - -  (3.5) 
h 

consecutive sweeps. We use 60 to denote the set of all standard sequences. 
Every sequence S yields a map on configurations (denoted again S): 
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visit the sites in the order of S and flip the corresponding spin if it leads 
to a decrease of energy. Notice that the order in which the sites are visited 
is crucial. The particular number (3.5) of sweeps in a standard sequence S 
ensures that we always finally reach a local minimum of energy--a con- 
figuration that no longer allows a spin flip decreasing energy. Indeed, in 
every step when the energy changes, it decreases by at least h, the difference 
of absolute minimum and absolute maximum in energies is at most 
(8,7+ 8K+ 2h )M 2, and finally, if no change during a sweep is made, the 
configuration is a local minimum. 

As stated in Lemma 2.1, octagons are configurations forming local 
minima of the energy. Before we proceed with the investigation of the 
saddle points between octagons, we prove this lemma. However, first we 
introduce some concepts to be used in the proof and later. 

We call a droplet any connected set C consisting of a union of unit 
squares centered at lattice sites. Clearly, for every droplet C there exists a 
configuration tr such that the droplet C is given by the set {x, a(x)= +1 }. 

To every droplet we assign three envelopes, M(C), Q(C), and R(C). 
The sets R(C) and Q(C), rectangular and octagonal envelopes, are the 
smallest rectangle and octagon, respectively, containing C. The set M(C), 
the monotone envelope of C, is the smallest monotone droplet containing C, 
where a droplet is called monotone if its boundary has the same length as 
its rectangular envelope. (See Scheme 3.2.) 

Scheme 3.2 

Observe that if the rectangle R = R(C) is not winding around the 
torus, the monotone envelope M(C) is the complement of the union of 
all those open right angles of the form { (x ,y )~R;x>xo,  y>yo},  
{ (x ,y)ER;x>xo,  y< yo}, { ( x , y ) ~ R ;  X<Xo, y> yo}, and {(x,y)ER; 
X<Xo, y <Yo} with (Xo, Yo) points of the dual lattice that do not intersect 
the set C. Notice that if R(C) winds around the torus, then M ( C ) =  
Q(C) = R(C). 

Proof of Lemma 2.1. Consider an isolated connected component C 
of the set {x, t r (x)= +1 } and the octagon Q circumscribed to it. We will 
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show that, supposing that  the energy of a increases under every spin flip, 
one necessarily has C = Q. Consider first the outer boundary OoutC. To 
avoid ambiguities, it can be defined by taking the outer  boundary  of an 
e-neighborhood of C in the limit e---, 0. Taking  into account  that  for e > 0 
one has a self-avoiding curve, we can consider (as will be useful later) a 
path winding around along all the boundary  Oou, C. Our  aim now is to 
prove first that  Oou t C ~  OQ (see Scheme 3.3; the set C is shaded, the heavy 
line denotes 0outC). 

c /)out C 

Oq 

Scheme 3.3. 

To  this end we inspect a catalogue of locally stable configurations 
(with respect to spin flip at x). We say that  a configuration tr is stable at 
x if the spin flip a(x) --* - tr(x)  increases the energy. Consider thus a con- 
figuration tr and a site x with a ( x ) =  - 1 .  Whether  the configuration a is 
stable at x depends only on its value at the nearest and next nearest 
neighbor sites of x. Namely,  it is stable at x whenever either M~/~) < 0 or  
M ~ =  0 and M~")<  0. As a result we get the following catalogue (up to 
rotat ions and reflections) of stable situations around x (dots stand for an 
arbi trary spin): 

b) 
�9 �9 �9 + + -  - + -  

d) 
- + + 

+ 

o - �9 - + -  - + -  

e) f) g) 
+ + -  - + -  - + -  

+ + + 

+ 

Suppose now that  tgou , C :/= dQ. Then, considering a path along OQ oriented 
in the same sense as that along 0out C, there exist two points A, B e 0out C c~ t~Q 
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such that the paths along 0out C and OQ between these two points do not 
have a common unit segment and such that either (a) the points A, B 
belong to the same side of Q (see Scheme 3.4a) or (b) they belong to two 
neighboring sides of 12 (see Scheme 3.4b). 

A B 

A27 

Scheme 3.4a 

A 

Scheme 3.4b 

The easiest case to tackle is that of Scheme 3.4a with the side in ques- 
tion being, say, horizontal. Namely, consider the path ~ between A and B 
and the lowermost horizontal line l touching ?, (see Scheme 3.5). 

A B 

Scheme 3.5 

At the point where ), for the first time (going from A to B) touches l, 
we have the configuration 

§ 
l + 

For the spin - to be stable one must have 

l + 
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and, 1 being the lowermost line touching ),, we must have 

" l -  - -  - -  

1 + +  

In view of (e) from our catalogue we necessarily have 

427 

+ -- _ 

l - + +  

Otherwise the spin - in the center would not be stable. The spin + above 
the line 1 is, according to (a) from our catalogue, always unstable (it has 
three - nearest neighbors) and we get a contradiction. In the remaining 
cases shown in Scheme 3.4 we get a contradiction by the same reasoning, 
once the lowermost horizontal line 1 touchirig y does not pass through the 
point B. 

The argument above can be also interpreted in the following way: 
whenever we encounter a concave corner 

§ 
+ 

then, for the spin - to be stable, we must have 

- - [ -  - -  - -  

+ 

and hence 

. . ] -  m - -  

+ - -  

because supposing the configuration 

- 1 . .  - -  m 

+ +  

leads to a contradiction. Discussing in the same fashion also the value of 
the spin above the upper + ,  we conclude that the configuration necessarily 
is 
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and our  concave corner is surrounded by two convex corners. We can use 
this observat ion in the following way. Consider the horizontal  line l passing 
through B and the point B' where ? first hits I. Knowing already that  
does not pass below l, it proceeds from B' horizontally so that a concave 
corner is formed: 

+1- 
B' + 

According to .the above observat ion there must be two convex corners 
attached: 

But since the line ), does not, before reaching B, pass below l, the point B' 
must coincide with B. 

Consider now the point /~ on ~,, two units backward from B, and 
repeat the above argument  with the curve f joining ,4 with B and the 
horizontal  line [ passing through B (see Scheme 3.6). 

A 

" I B  
t l " L 

Scheme 3.6 

If [ also passes through A, the curve ~ has to be just a horizontal  
segment joining A and B. If not, we can repeat the argument  and get a 
point B. I terating this process, we eventually get a line passing through A. 
As a result, the curve y actually follows the boundary  aQ and we can con- 
clude that  dour = aQ. 

To show, finally, that  aC=Oou,  C (there are no holes in C), consider 
the set aC\0out C and the lowermost  horizontal  line touching it. Taking the 
left most  touching point, we necessarily have a concave corner 

+ k  
l + 

and thus also 

+ L  
+1- 



Shapes of Growing Droplets 429 

The newly attached bond lies below I and at the same time does not belong 
to aout C; this would be possible only if the upper right spin were + ,  which 
is not the case. Hence we get a contradiction with the fact that the set 
O C \ d o u  t C  does not reach below l. 

The fact that the octagon C has to be stable (Li, l;/>2) is obvious. 
Finally, if the configuration a contained two octagonal  components  of 
mutual  distance one, there would always exist, as it is easy to convince 
oneself by inspection of possible cases, a minus spin between them, whose 
flipping would lead to a decrease of energy. �9 

Among octagons with the same circumscribed rectangle, Q =  
Q ( D ~ ,  D 2 ,  l I ..... 14), the standard ones, or at least those with oblique sides 
as close as possible to l*, minimize the energy. This is stated, in a slightly 
more general form, in the following lemma. 

Lemma 3.2. Let R be a rectangle with sides D~/> D 2 and consider 
the set , ~ ( D I ,  D2) of all monotone  droplets with connected interior 4 whose 
circumscribed rectangle is R. Let a0 be the configuration corresponding to: 

(a) The octagon Q(D,, D2, l*) if D2>~ 21"- I. 

(b) The octagon Q(D,, D2, l, = I., = / 3 = 14 = �89 + 1 )) if D2 < 2l* - 1 
and it is odd. 

(c) The octagon Q(D~, DE, l I = 12 = Dz/2, 13 = 14 = Dz/2 + l) if 
D2 < 2/* - l and it is even. 

Then 

min H(tr) = H(ao) 
a ~ . # ( D I , D  2 } 

ProoL Let a~JC(D~,D2) and consider its circumscribed octagon 
Q(Dm, D2, 1~ ..... /4). The configuration ~ represented by Q has clearly a 
lower energy than a because it occupies a larger area then C(tr) and, taking 
into account  that in every site of the dual lattice at most two of its edges 
meet, its boundary  necessarily has at least the same number  of corners as 
C(a) (this is clearly true for every one of its oblique sides separately). The 
energy of 6 is 

4 

H(f l=H(-1)+2J(D,  +D2)-hDtD2+ ~ F(I,) 
a = l  

4 Notice that even though a monotone envelope is connected, its interior might split into 
disjoint components in a situation like that illustrated in Scheme 2.1. Cf. Lemma 4.3. 
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Notice that the function 

F ( I ) -  - K ( 2 l -  1 ) +  �89 1) (3.6) 

is minimized for l = 1". Indeed, for 1 E R, the parabola  F has a min imum at 
l= 2K/h + 1/2 and this point is closer to 1" than to either l* - 1 or l* + 1. 
Hence, whenever Dz > 1 2 1 " - 1 ,  the energy of ~ is larger than or equal to 
that of a o minimizing every term F(I,) separately. 

If D2 < 2 1 " - 1 ,  we first fix Z / ,  and under this condition minimize 
Z F(I,,). The min imum is achieved for a maximally symmetr ic  quadruple  
l'1 ..... 1~, for which m a x ,  l ' o - m i n ,  l'a~< 1, such that Z I ' o = Z l ~ .  If Z l ~  is 
not divisible by four, there is some freedom in the choice of l'1 ..... 1~ and, 
in particular, the conditions 

Ill § z:~- (1; + Z;)l ~ 1 and it', + z ; -  (1; + l;)l  ~ l 

can be satisfied. Given that  Z l. ~< 2(D2 + 1 ), we have also 

max( l ;  +l'4, l'2 + l'3) <~ Dz + 1 and max( l ;  +l; ,  l'3+l'4)<.D,_+ 1 <~ DI + 1 

and thus the octagon Q(D~,D2, I;,I',_,I'3, I'4) exists. We can further 
decrease its energy by increasing one by one l; ..... /~ maintaining maximal  
possible symmetry.  The resulting octagon depends on the parity of D2. �9 

With every octagon Q we associate two basins ofattraction--a narrow 
one 

~ ( Q )  = {tr: Sa = Q for every s tandard S} (3.7) 

and a wide one, 

:~(Q) = {a: there exists a s tandard S such that Sa = Q} (3.8) 

Clearly, 

~ ( Q ) ~ ( Q )  

and the sets ~ ( Q )  are disjoint for different Q's. 
When discussing the growth of a droplet,  we study the passage 

between close s tandard octagons with different rectangular envelopes. It is 
possible to pass between different octagons with the same rectangular 
envelope at the cost of overcoming energetic barriers between them. A cru- 
cial circumstance here is that  the barriers are much lower than those one 
has to pass when changing the rectangular enve lope- - the  corresponding 
time scales are much shorter and on the scale relevant for the passage to 
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a "neighboring" standard octagon, these barriers can be overcome with a 
nonvanishing probability. If we choose to disregard the lower barriers, we 
can introduce "domains of attraction" associated with every standard 
octagon Q=Q(Di,  D,_) specified by its rectangular envelope R(DI, D,_). 
Namely, we combine different octagons with the same rectangular envelope 
and introduce a broad domain of attraction ~(Di,  D2) and a naturally 
restricted one ~(D~, D2). We thus define 

~(D~, D_,)= U "~(O) (3.9) 
Q:(DI (QJ .D , IQJ )  = (D~, D:) 

for every (D~, D2)~;e+. For (D~, D2) such that min(D~, D2)~>3 l* -2  we 
define 

@(D,, D2) = {a: for every standard S, Sa = Q with Q such that 

(D~(Q), D2(Q) ) = (D,, Dz) and min(L,(Q), L2(Q)) >1 l* } 

(3.10) 

Notice that the condition min(D~, D2)/> 3 l * - 2  assures that the standard 
octagon Q(D~, D2)~ ~(D~, D2). Let us introduce also the boundaries 

8-~ = {a ~ @ such that there exists x such that ac~)~ ~ } (3.11) 

and 

0~ = {a e ~ such that there exists x such that ac"~ r ~ } (3.12) 

Notice that, even though we take 09  outside ~,  clearly 0~ c ~ and 
thus all configurations in 8~ and ~ can "fall down" to a minimum 
"inside" R(Dt,D2). To see that 8 ~ c ~ ,  we observe that if ~e@ and 
a = ~l-"J ~ O~, then H(~) < H(a). Indeed, if a were stable at x, the flip ~ ~ a 
would decrease energy and the sequence {x, S} with S such that Sa leads 
to Q with (DI(Q),D2(Q))#(D,,D,)  or with min(LI(Q),L2(Q))<I* 
[such a sequence S exists since a r @(D~, D,_)] would map the configura- 
tion r to this Q, in contradiction with the assumption ~ e ~.  

Whenever min(D~, D2)> /21" -  1, we introduce the energy ~7(D~, D2) 
by 

~'h(min(Dl, D, ) -  1)-4K 
E(D~, D,_)= ( 2 J - 4 K - h  - 

if min(D~, D2)< D* 

if min(Dl, D,)>~D* 
(3.13) 

and, for min(D l, D_,)~> 3 l * - 2 ,  also 

E(Di,D,_)=E(Di,D2)+max(O, 3l*-min(Di,D,_))qh (3.14) 
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where q is the constant defined by (2.18). For sufficiently large min(Dl, D2) 
we have E(D~, D2)=/~(D1, D2), and according to the following lemma, 
this energy actually yields the height, above the value H(Q(Dt, D2)) of the 
energy of the standard octagon, of the lowest point on the boundary of the 
domains of attraction _@(D t, D2) and ~(D~, D2) as well as the heights of 
the saddle points for escaping paths. If min(D~, D2)< 3/*, the situation is 
more complex. A path leaving ~ through a saddle point is actually heading 
to an octagon Q still belonging to ~ - - t h e  saddle point is not on the 
boundary of ~.  

Lemma 3.3. For every (Dj,D,)EZ2+ such that min(D~,D,)~> 
2 l * -  1 one has 

min sup H(a)< > min 
to:orB ~ .r162 o E ~ o  t r E O c . ~ | D i , D 2 }  

H(a) = H(Q(D1, D2))+ E(D,, D2) 

(3.15) 

where the minimum is over all paths starting at any octagon 
Q = Q(D~, D2, Ii, 12, 13, 14) and leaving the set ~.g of all monotonic con- 
figurations. 

If, moreover, min(D~, D2) >~ 3/* - 2, then also 

min sup H(a) = min H(a)=H(Q(DI,D,_))+E(DI,D2) (3.16) 
co:  o" 0 ~ c/.c a E t o  r ~ O f / ( D l ,  D 2 1  

where the minimum is over all paths starting at the standard octagon 
Q(Dt, D2) and leaving the set ~ ( D , ,  D2). 

ProoL Let a e 0~,  ~ = a ~-~ r ~.  Since a ~ ~ ,  there exists a standard S 
such that Sa = Q and (D~(Q), D2(Q))= (D~, D2). Consider the sequence of 
configurations obtained by applying S on a. Taking it in the opposite 
order, we get a path co: Q --* a such that the energy increases in every step. 

With Q =  Q(D~, D2, l~, lz, 13, 14), Dt >~D2, and using the function F 
defined in (3.6), we shall prove that 

4 

H(a)>~H(Q)+min[h(D,_- I ) - 4 K ,  2 J - 4 K - h ]  - ~ [F( l , ) -F( l*)]  

,,=1 (3.17) 

On the other hand, particular cases of a ~ 8~ yielding equality in (3.17) can 
be displayed. Namely, if D., ~< D*, we take the standard octagon Q(Dj, D2) 
and cut, except for one spin, all of the row of ( D 2 -  1) spins; the resulting 
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droplet corresponds to a e 0~ since cutting the last spin we get ~ r ~.  If 
D 2 > D*, we get tr E O~ just by attaching one plus spin to the coordinate 
side. 

Taking into account that 

4 

H(Q)=H(-I)+2J(DL+D,_)-hDtD2+ ~'. F(lu) (3.18) 
a ~ l  

we get from (3.17) the sought minimum for O~(D~, D2), 

min H(a) = H(Q(D,, D2)) + E(Dt, D2) 
a~Oc.~IDI.D2} 

To prove (3.17), notice first that, without loss of generality, we can sup- 
pose that the path o9 consists of at most D _ , - 1 - m a x ( I t  + 1 2 - 2 ,  2 1 " - 2 )  
steps. [For  concreteness we suppose that max(It + 12, 12 +/3, 13 + 14, 14 + It ) = 
Ii + 12.] Indeed, in every step the energy increases by at least h and 

h(D2-(2l*- 1))> h ( D 2 -  I ) - 4 K  

since h(l*-1)<2K. Hence, the number of steps can be taken to be at 
most D 2 - I - 2 ( 1 " - 1 ) .  If 11 +12>21",  we have an even stronger restric- 
tion on the number of steps. Indeed, it suffices to prove a lower bound on 
the increase of energy, 

4 

h[D2- 1 - ( l  I - -  1 ) -  (12  - -  1)'] >~h(D2-- 1 ) - 4 K -  ~ [ F ( I , ) - F ( I * ) ]  

This is true once we verify that 

F(l)- F(l*)>~h(l- 1 ) - 2 K  

(3.19) 

(3.20) 

for any L To see this, we observe that the line (as a function of 1) on the 
right-hand side above touches the parabola on the left-hand side in the 
point / = l *  + 1 and is below it for l = l *  and l = 1 "  +2:  

l = l * :  F(I)-F(I*)=O>h(I*-I) -2K 

l = l * + 1 :  F(I)-F(I*)=-2K+�89 

1 = I * + 2 :  F(l ) -F( l*)=-4K+h(2l*+l)>-2K+h( l*+l)  

[Notice that equality in (3.19) is attained only for It = 1 2 = 1 " +  1.] 



434 Koteck~/and Olivieri 

b) 
v 

c) ~ - I I b -  

Scheme 3.7 

Next, we can suppose that all droplets ( ~  o9 (including the last one, a) 
are monotone with connected interior. Indeed, starting from the octagon Q 
and supposing that after n<~D2+l-l~-12 steps we still have such a 
monotone droplet, minimal energy flips leading to a nonmonotone droplet 
are those shown in Scheme 3.7. (The given number of steps is clearly not 
sufficient to allow any configuration like 

777] 

with subsequent splitting into disjoint components, etc.) The increase of 
energy in the cases (a), (b), and (c) is 2J-4K+h, 2J-2K+h, and 
2 J - 4 K - h ,  respectively. In all three cases this value is at least as large as 
m i n [ h ( D 2 - I ) - 4 K ,  2J-4K-h]  and already this single step would suf- 
fice for our claim. This remark proves, in particular, the first inequality in 
(3.15). 

Observe now that the spin flip a--*a~X~=r necessarily decreases 
energy (otherwise one would have ~ ) .  Taking into account that a is 
monotone with connected interior, the droplet ~ is also monotone with 
interior consisting of at most two components. Suppose first that r has 
connected interior. For such ~, there clearly exists a standard sequence 
leading to its octagonal envelope Q(~) and, since ~ ,  one has 
(DI(~), D2(~)) ~ (DI, D2). As a consequence 

either (D~(a), D2(a)) v~ (D~, D2) [actually Dr(a)  > D~ or DE(a) > D2] 
or (Dl(a), D2(G)) = (Dl, D2) and d~ = 1 for some a = l ..... 4 
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[we use here d,,(a) to denote the lengths of segments along which the set 
C(a) intersects the sides of the circumscribed rectangle R(a)] .  

Consider the first configuration ~ in co with this property and its 
predecessor (. If Dt(~) > D, or D2(~) > D2, then 

H(a) - H(Q) >1 H(~) - H(~) >1 2 J -  4 K -  h 

>/min[h(D 2 - 1) - 4 K ,  2 J - 4 K - h ]  (3.21) 

If (Dr((), D_,(())= (D,,  D.,) and at the same time do = 1, one had to cut at 
least L , , - d , = L , - 1  spins touching the side of R(Q) to reach this 
configuration, and thus 

H(~) - H(Q) >~ h(La - I ) >>. h(D2 -.I - (l, - I ) - (/2 - I )) (3.22) 

Hence, using again (3.19), we get (3.17). 
If the interior of ~ consists of two components, then the path o) 

reaching the configuration a should consist of at least L , -  1 steps. Indeed, 
consider the horizontal (or vertical) line passing through the point in which 
the closures of these two components intersect. In the configuration Q there 
are at least 2L, plus spins at sites of distance 1/2 from this line, while in 
the configuration r at least La of them are missing ("two quadrants filled 
with minuses touch at the considered intersection point"). As a result, the 
inequality (3.22) holds for a and we get (3.17). 

To get the bound for c~(Di,D2), consider first a~O~(Di,D2) \ 
O~(D~, D2). Notice that then there exists a standard sequence S mapping 
cr onto an octagon Q, Sa=Q, such that min(L,(Q), L2(Q))<l*. Indeed, 
by the same argument as above we can show that all ~ on the (reversed) 
path from Q to a are monotone, (D,(a), D2(tr))= (DI, D2), and d.(a)>~ 2, 
a =  1 ..... 4 [otherwise we would have aEO~(D~, D2)]. Hence, there does 
not exist any standard sequence S mapping rr onto an octagon Q such that 
(D,(Q), D2(Q)) r (D,,  D2). 

Moreover, for at least one ~ on our path one has Q(r and 
Q(~) r Q. There exists a standard sequence mapping ~ into Q and thus 
Q(r ~ Q. If one hand Q(~) = Q for every ~ including a, then one could use 
the fact that, since a e 39,  there exists a standard sequence S mapping a 
into O such that (Dr(Q), D 2 ( Q ) ) = ( D  t, D 2 ) a n d  min(L~(O), L2(Q))>~/* 
to get a contradiction. Indeed, for such Q one cannot have Q c Q(a)= Q 
and at the same time (Dt (Q) ,D2(Q_))=(DI(Q) ,DdQ)) .  Thus, on the 
uphill path from Q to a a K-protuberance appears at least once and thus 

H(a) >1 H(Q) + 2K-  h (3.23) 

822/75/3-4-6 
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We can label the sides of the octagon Q in such a way that 
L2 = D2 - Ii - 12 + 2 ~< l* - 1, which is equivalent to 

Ii + 1 2 - 2 > ~ D 2 -  1 ~ ( l * - 2 )  (3.24) 

The difference of the energy of the octagon Q and the standard octagon 
Q(D~, D2) is at least 

4 

H(Q)  - H(Q(DI ,  D2)) >~ ~ (F(Z~) - F( l*) )  (3.25) 
a = l  

If min(Dl,  D2)/> 3l* -- 1, we use the bound (3.20) to evaluate, using (3.24), 
the right-hand side 

4 

(F(I,,) - F(I* ))>/F(ll ) -  F(I*) + F(12) -  F(I*) 
a = l  

>1(11 + l z - 2 ) h - 4 K  

> ~ ( D 2 - 1 ) h - 4 K - ( l * - 2 ) h  (3.26) 

With the help of the equality (2.18), qh = 2 K - h -  ( l * - 2 ) h ,  we get from 
(3.23) and the above inequality the sought lower bound with 1 in place of 
3 l * - m i n ( D i ,  D2) in the definition (3.14). 

If min(Dl,  D z ) =  Dz = 3 / * - 2 ,  the bound (3.24) asserts that 

l I + 1 2 - 2 ~ > 2 ( l * -  1)+  1 (3.27) 

Supposing, say, max(lj ,  lz)= 1,, we can infer that 

Ii >~l*+ 1 (3.28) 

and thus 

4 

2 
a w l  

(F(la) - F(I* )) >1 F(l, ) - F([*) >~ hl* - 2K (3.29) 

Using now the bound (3.23) and then the bound (2.17) and the definition 
(2.18), we get 

H(tr) >1 H(Q(D~,  D2)) + hi* - 2 K +  2 K -  h 

= H(Q(D~, O2)) + h ( l * -  1) 

= H(Q(DI ,  D2)) + h(31* - 3) - 4 K +  2qh (3.30) 

Thus, we have finished the proof for a e O~(Dt ,  D2)\O~(DI,  D2). 
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Let us now turn to the case aeO~(Dt ,D2)na~(D , ,D2) .  If 
min(D~, D2)>~31*, the needed bound is the already proved inequality 
(3.15). 

In the case (D==) min(D~, D 2 ) = 3 1 * - 1 ,  one can consider a path 
leading to Q with L2(Q)>~I*. In the case leading to (3.21) the needed 
bound is amply satisfied since 

D2h - 4 K +  2h < 2 J -  4 K -  h (3.31) 

In the case leading to (3.22) we get 

H ( a ) -  H(Q) >~ h ( L 2 - 1 )  ~> h(l* - l ) >~h(3l* - 2 ) - 4 K  + rlh (3.32) 

using (2.17). 
If (D2=)  min(D~,D2)=3l*-2 ,  we get again either the sufficient 

bound (3.21) or 

H(a) -H(Q)>~h(L2-1 )>~h( l* -  l ) = h ( 3 1 * -  3 ) - 4 K +  2rlh (3.33) 

Finally, to prove that 

min sup H(a) = H(Q(D~, Dz)) + E(D~, Dz) (3.34) 
e o : o  0 ~ ~-d c o E r  

we have to find a path co from the standard octagon Q(D,, Dz) to a saddle 
configuration a with 

H(a) = H(Q(D~, D2)) + E(DI, D2) 

such that for every ~ e co one has 

H(~) <~ H(Q(O~, 02)) + E(OI, 02) 

If min(Dl,  D2)~>31*, the saddle point a is actually on the boundary 
0~(D1, D2). 

A path satisfying the above condition can be taken, for example, by 
first cutting one layer along two oblique sides of the standard octagon and 
then along the coordinate side between them. The highest point on this 
path, before the final steady growth when cutting the coordinate side, is 

H(.Q(O~, 02)) + 2(l* - 1) h - ( 2 K -  h) 

< H(Q(D~, D2)) + (min(D~, D2) - 1 ) h - 4K 

once min(D 1 , D2) >/31". 
If min(D~, D2)= 3 l * -  1, corresponding to min(Ll,  L 2 ) = I * +  1, one 
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reaches the saddle point of ON(D~, D2) already when finishing the cut of 
two oblique sides attached to the shorter coordinate side (yielding the 
coordinate side of the length 1" - 1 ) with the energy 

H(Q(D,, D2)) + 2(l* - 1 ) h - ( 2 K -  h) = H(Q(D,, D2) ) + E(D,, D2) + ~lh 

Finally, if min(Dl,  D2)= 3 1 " - 2 ,  corresponding to min(L~, L2)=  l*, 
one reaches, already when cutting only one oblique side, the saddle point 
with the energy 

H(Q(D,, D2)) + (l* - 1) h = H(Q(D~, D,)) + E(D,, D2) + 2tlh �9 

In the following Lemma we evaluate, using the reversibility of the 
process, the hitting time r ,  to a configuration r/, starting from a configura- 
tion a, in terms of the difference of energies of the concerned configurations. 

has 
L g m m a  3.4. For every ~ > 0  and all a # t / e F ,  H(~r)<H(r/),  one 

P~'(T"<~exp{[3(H(tl)-H(r162 tJ-~ , 0 

ProoL Given T~ IN, one has 

Po(z, < T) 

= Y. ~ P o ( o o = ~ , ~ , = ~ ,  ..... a . , _ , = ~ s _ , , o ~ = , 7 )  
0 < s <  T #l,...,#s_l~F\tl 

= exp{ - f l ( n ( t l ) -  H(a))  } 

x ~ ~ P(ao=~,~,=a,._, ..... a~_,=~, ,a,=o)  
0 <.~" < T tTI , . . . ,  o ' s -  I E F \ t /  

~< T e x p [ - f l ( H ( t / ) -  n( t r ) ) ]  �9 

Our next task is to characterize octagons with respect to their 
tendency to grow or shrink. This will be done in Propositions 1-4. Before 
presenting them, however, we introduce some tools that will be repeatedly 
used. 

First, we define a set of Markov chains obtained by observing our 
stochastic trajectories only when they pass through a particular set of 
configurations. 
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Let Q be a local minimum (octagon) of the energy and B any con- 
nected set of configurations containing Q. Here connected means that, for 
all O-, q e B ,  there exists a sequence O-, . . .o -keB such that O-1 = a ,  O-k=q, 
and (o-i, o'i+ 1) a r e  "nearest neighbor configurations" for i =  1 ..... k -  1, with 
O- and r considered to be nearest neighbors iff there exists x �9 A such that 
Z" = O r ( x ) .  

The exterior boundary OB of B [cf. (3.11)] is the set 

OB= {q=o-I"~; q r B, O- 6 B, x e  A } (3.35) 

For  a particular Q and B we consider the following Markov chain, {~,}, 
with the space of states 

X = Q w O B  

Introducing the sequence of times 

Vo <Uo <~ Vl <U 1~<v2 < . . .  

w i t h  Vo = 0, ui ,  vi �9 I~, 

we set 

u,,=inf{t > v,,: o-, #o- ,_l}  

v,,=inf{t>~u,,: O- , �9  
(3.36) 

and 

~,, = O-~,,, O-oeQuOB (3.37) 

0 = inf{n: ~,, = Q} 

v = inf{n >/0: ~,, �9 aB} 
(3.38) 

For  every s �9 I~ one has 

Po(r,~B > s) >1 PQ(v > s) = P(Q ~ Q)S = [ 1 - P(Q ~ aB)]  s 

where 

P(Q --* Q) = P(~I = Q I Co = Q) 

P ( Q ~ O B ) =  ~ P ( ~ , = r / l ~ o = O ) = P ( ~ , e O B l G o = Q )  
qeOB 

(3.39) 
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We have 

P(~ cOB I ~o= Q) 

$0=O s = l  5"h . . . . d s - l eB\{Q } ds~t'tB 

O'so+ I = ~l ,'", O'so + s = ffs) 

= ~ ~ E E exp{-fl[H(O~)-H(Q)]} 
s o = l  s = l  d l , . . . , d s _ I e B \ { Q }  # s e t ~ B  

x P(ao = 5~, al =0s_1  ..... a~_l =51 ,  a,.=Q ..... a~+~o = Q) 

~< exp{ - f l  min.~aB [-S(a) - H ( Q ) ]  } 

d c - O B  sO = I s =  1 

~< IOnl e x p { - f l  min,~an [n(a)-n(Q)]} P,,(zo>~ 1) (3.40) 

In conclusion, for all e > 0 one has 

P(Q--*OB)<exp{-fl[min,,~oB(H(a)-H(Q))-e]} (3.41) 

whenever fl is large enough. 
For  a set of octagons, say Q j, j =  1 ..... N, we will consider suitable 

connected (mutually disjoint) sets Bj containing Qj and, as above, we 
introduce simultaneously the corresponding Markov chains ~,�88 [see (3.37)] 
with the hitting times Vi, Oj defined as in (3.38). To avoid ambiguities (the 
stochastic trajectory can come back to an octagon Qj with j>i), the 
process CJ is defined considering the portion of the trajectory between 
the moment  it first enters OBj until, after visiting Q j, it first enters OBj+t 
(visiting, possibly, other Bi with i<j  in the meantime). 

Often we will combine two subsequent events with the help of the 
following composit ion operator.  In general, consider two events e~,, e~2 
taking place in the intervals of time [0, t , ] ,  [0, t2], respectively. This 
means that e I 2 . ,  e,2 are subsets of • measurable with respect to the 
a-algebra generated by {tr,},~ to.,~l, {tr,},~ ro.,.q, respectively. We define the 
composition (el~ ; e~2) of e~ ,  e,~ by taking 

(el, ; e~,)= e~, n T,,e~, (3.42) 

with T, denoting the translation operator  shifting the events in a natural 
way by a time t. 
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~" taking place in the intervals More  generally, given the events g,~ . . . . . . .  
[0, t , ]  ..... [0, t , ] ,  we set 

" ~ . . . .  n c~ +,._, 8',' (g,,,g,:,..., g, . )  = g',, T,,g2,2n ... T,,+,~+ ... (3.43) 

Given g, for every t ~ I~ and a value t-~ l~, we set 

i 

~ , =  U g, (3.44) 
t = l  

We call ~,- the extension of g, up to t-. 
Finally, we use g to denote the extension goo. Namely,  we simply write 

~ 0 g, (3.45) 
t = l  

Given g~ " ,, ..... g , . ,  which we suppose to be defined for any n-tuple 
--i  t~,..., t,,~ I%1, we define the composition of  the extensions g,-, i =  1 ..... n, as 

~1 -~ ~'i,) = ( ;, ; 6r7,;...; - "  
fl ~ 

U ' U (el,;. . .;  e ; ' )  
t l = l  f n ~ l  

il in 

U " U E e ; , ~ r , , ~  ... ~r,,+,:+.. .+,~ 
t l  = 1 t n =  1 

(3.46) 

will be interested in a process passing As ment ioned above, we 
through a series of local energetic minima characterized by octagons Q j, 
j =  1 ..... N. In a typical situation, the boundaries  of subsequent connected 
sets B~ ..... BN intersect. Namely,  we suppose that  dBinaB~+~#O for 
i =  1 ..... N -  1 and that a sequence of configurations St, $2 ..... SN+~ is given 
such that Si+~ ~OB~c~aB~+j for i= 1 ..... N -  1, S~ eOBl, and SN+~ eOBN. 
One can think about  the configuration S,.+ ~ as about  a saddle point for the 
passage up from Q~ to Si+~ and then down from Si+t to Q~+l. Supposing 

N - - l ,  N further that a sequence t~,, t~ ..... t d t,, ~ ~ is given, with u and d standing 
for up and down, we define, for j =  1 ..... N, the event 

. ~ i "  = {o9 ~ I2:a0 = Qj, roB, = t~, ar = Sj+,  } 

= { ~ = a j ,  J - S j + l , % = t ~ }  (3.47) ~ v j  - -  

("ascent up to the saddle po in t ' )  5 and, for j =  1 ..... N -  1, the event 

~j .d  = t ~ } =  {r = S y + I  l )0 j+ l= t J  } (3.48) ,~ = {co ~ ~ :  ~ro = S j +  , ,  T,~Q,,, 

Notice that, since ~ , , -  TM - S j  + ~ ~ OBj c~ OB~ + t,  the definition of the event ~ ~ contains a condi- 
tion that the stochastic trajectory is not  revisiting any set B~ with i < j before reaching dBj+ ~, 
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("descent from the saddle point"). Further, we can consider the composi- 
tion 

( •  
. . . .  f f , . a . ~ z  . . . .  " " " , ~ ' - '  ' d J ,'~ ' 4 ' ,~, , ~ i a  ..... ~ u - l . u . ~ u . , , ~  (3.49) 

-i "i "N defined by Eq. (3.46). Given t,,, t a, i =  1 ..... N -  1, t,, e N, we consider also 
-i -i . the extensions up to t , ,  t a. 

: i ; ) ' - '  :;" 

,,o ..... , : - ,  , ,~ , -  U --- U U 
N ,lu=l t N - '  l t . = l  

( , ~ l i u .  . ~ - N - -  l . d .  ~ N . u ~  
tu , . . .~  ,.7- tdN-I  ~ tuN ] 

(3 .50)  

Observing that the events ( ~ i ; " ; . . . ; ~ ' " )  in the right-hand side of 
Eq. (3.50) are manifestly disjoint, ~ve have" 

p . ~ l , u  (,~ ? ;...; ~ N -  l ,a .  ~ u , , ~  
i N - I  , *if- ;N ] 

u "d "u 

-I i ~ -  I -N t u t u 

= Y ... Z Z , .  ,, . . . . . .  , : - ,  . , : ,  
,'.=l d - ' = l  d = '  

ilu f N -  I -N 

~ ' N -  I . d  
. . .  )IF 2 

, - ~  ,~ - l  ~ J L d = ,  ';; J 

= P ( : I - ! " )  P(:~-,"") e ' : ~ "  .N-,) (3 .51)  
I u 

We want now to restrict ourselves to a sequence of ascent events that 
can be defined only in terms of the above Markov chains, more precisely, 
in terms of the events whose characteristic functions are measurable with 
regard to the a-algebra generated by the random variable ~i,. This will be 
achieved by using 

~ - j , u  - -  " 
,, = : " " n  {~o  = Qj ,  ~ : B , ~  t,~} (3 .52 )  

where the event 

"~J .... 0 ~j,u J ' ~ - - a j + l }  , j = l  ..... N ( 3 . 5 3 )  - ~ ,, = { ~  = a j ,  ~,,, 
t/u= 1 

has the desired measurability property. Introducing now 

N - l  

i f =  ('] {?~n,~<t-~} (3.54) 
j = t  
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where ~,,B, is defined by 

r,,B, = inf{ t > rQj: a, ~ OBj} (3.55) 

and putt ing 

we get 

- ~ .  ,.,/. - . .~ N. -  , . <  ~ , , , . , , )  
" ~  = ( ' ~ ' ' ;  ~ iJ ' "~-" '"; '" ;  8 - '  ' 

( • ,  . . . . . .  . ~ N - , . , 1 . . r  N:,,, 
4 ...... 4 - '  ' 4 J 

- -  ~ ' ~  ' , d .  - -  

(3.56) 

we would have 

P(J~ n f#)>~ P(J ' ) - -  P(fq") 

Thus, if we get a bound of the form 

P(f~") < a <~ �89162 

p(o~ n c~) > �89 (3.60) 

To  evaluate the probabil i ty of the event ~ ,  we can use the following 
general strategy. First, we evaluate the probabil i ty P(~ J,., -- Si+, ) relative to 
the Markov  chain eJ [see Eqs. (3.37) and (3.38)]�9 We have 

PQj(~-,~=Sj)= ~. [ I -P (Q j - - , .OB i ) ] "P (Q j - , ,S j+ , )  (3.61) 
t / = O  

(3.58) 

(3.59) 

"'0 �9 . + J ' ~ -  1 . u .  . = U �9 ,:,_U . . . . .  s'.,,,l,: / 
".='  , '=,  '~=' =, 4 = '  , n ~  

= o ~ m ~  (3.57) 

To get a lower bound on the probabil i ty of ~ c~ s one can use the lower 
bound 
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From now on we suppose that the configurations S~+jEOBinSBi+~,  
i= 1 ..... N -  1, S~ ~OB~, and Su+~ EOBN are chosen so that 

min H ( a ) = H ( S i ) ,  j =  1 ..... N (3.62) 

Using (3.41), we can thus infer that, for every ~>0  and fl sufficiently 
large, 

P(Q j--* OBi) <<. exp{ - f l [  H( S i ) -  H(Q j ) -  e] } (3.63) 

Let us suppose further that 

H(Sj) > H(Si_l  ) (3.64) 

and that we have the lower bounds 

P(Qj ~ Sj+, ) >1 exp{ - f l [ H ( S j + ,  ) - H(Qj) + e] } 

and 

Ps~+,(Oj+ , <~ [Jd)~>exp(--eft) 

(3.65) 

(3.66) 

for every e>O and fl sufficiently large. Combining the bounds 
(3.63)-(3.65), we get a lower bound (3.61). Using now this bound together 
with definitions (3.50), (3.53), and (3.56), Eq. (3.51), and the bound (3.63), 
we conclude that 

(3.67) P ( ~ )  >/exp{ - f l [ H ( S N ) -  9(31 )+ g] } 

for every e > 0  and fl sufficiently large. In our particular case, Eq. (3.62) 
and the inequalities (3.64) and (3.65) will be satisfied and we will get 
estimates of the form (3.66). On the other hand, we get upper bounds on 
P(ff") that are superexponentially small in fl [see the condition (C1) in the 
proof of Proposition 1 ] yielding (3.59) for fl sufficiently large. Thus we get 

P( .~ m if) > exp{ --fl[ H(SN) -- H(S,  ) + e] } (3.68) 

for every e > 0 and fl sufficiently large. 
Finally, to state Proposition l, we need the definition of yet another 

stopping time. Namely, considering standard octagons Q(D~,D2) with 
Dj~>3/* -2 ,  i =  l, 2, we take f to be the first hitting time to a standard 
octagon different from Q(D~, D,_), 

"~ = r ~e\e~o,,n2 ~ (3.69) 
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Here 

~Q= [J Q(D,,D2) (3.70) 
DI.D2 

is the set of all s tandard  octagons.  Supposing that  D2<~D~ with 
3 / * - 2  < D z  < D*, we shall use E(L2) as shor thand  for E(D~, D2) defined 
in (3.14): 

E(L2) = 2 [h( l*  - 1 ) - ( 2 K -  h) ]  + h(Lz - 3) = h(Dz - 1) - 4K 

= h(L2 - 1 ) - 2hq (3.71) 

f o r L 2 > l * + l  and 

E(l*+ 1) = 2 h ( l * -  1 ) - ( 2 K - h )  (3.72) 

for L 2 = I * +  1. 

Proposition 1. Consider  a s tandard  oc tagon Q(D~,D2) with 
D2<~D~ and let 

3/* - 2 < D2 < D* (3.73) 

Let, further, 

"[='~QIDI.D2_I)wQ(DI_I.D2 } if DI=D2 (3.74) 

and 

r = rQ~o,_ l.o.,I if D2<DI (3.75) 

Then, for every e > 0, one has 

sup P , ( r < e x p { f l [ E ( L 2 ) + e ] } a n d z = f )  p ~  , 1 (3.76) 
aEQ(DI,D2) 

ProoL We suppose  that  DI > D2. The case D~ = D 2 does not  present 
any supplementar.y difficulty and is left to the reader. 

First ,  let us consider  the case L2 > / * +  1. The main  step in the proof  
will be to show that  

P,(L~o, .o ,~>exp{f l[E(Lz)+e]})  t 3 ~  ' 0  (3.77) 



446 Koteck~ and Olivieri 

and 

P, , ( ' ce>exp{ f l (2K-h+e)})  ~_~_ , 0 (3.78) 

for every e > 0  and a e ~ ( D j ,  D,_). Once (3.77) and (3.78) are proven, we 
can reason in the following way. 

From (3.77) we know, in particular, that starting from Q one 
reaches with high probability the set O~(DI,D2) before the time 
exp{f l[E(Lz)+e]}.  Moreover, it is improbable to reach O@(DI,D2) 
outside the set b~ D2) of configurations yielding minima of H on 
O~(D~, D2) [see the definitions (3.10) and (3.11)]. Indeed, one clearly has 

P Q( r o~\, ~, < z o~ ) <~ P Q( Z ~e\.,/, < exp{ fl[ E( L2 ) + e] }) 

+ Pe(r,,~>~exp{fl[E(Lz)+e.]}) (3.79) 

for every e >  0 (we have dropped the explicit dependence on D,,  D2). The 
first term on the right-hand side can be bounded with the help of 
Lemma 3.4, taking into account that according to Lemma 3.3, for every 
6ESe(D~, D2) one has 

H ( 5 ) =  min H ( a ) = H ( Q ( D t , D 2 ) ) + E ( L , )  (3.80) 
a E Oc .~ IDI ,D2)  

Once reaching 5e(D~, D2), with high probability one of two possibil- 
ities occurs. Either we descend to Q(Dj - 1, D?.) with a fixed nonvanishing 
probability, or we return to ~(Dz,  D_,). The saddles in 5P consist just of 
a contracted octagon united with a unit-square protuberance and, with 
probability approaching 1 as fl--* oo, this protuberance is either cut off or 
is made stable by a flip of a minus spin adjacent to it. Actually, following 
the argument of the proof of Lemma 3.3, we can show that for every 
5eSg(Di ,  DR) one has 

1 
P o ( r = l ) > i -  ~ and Po(re~O~.D,j<r~,~D,.O,.l\loilr>l) t:r~. ' 1 

(3.81) 

After returning to ~ (D i ,  D_,) and reaching Q, according to (3.78), we 
can repeat the attempt and prove, finally, with the help of the strong 
Markov property, that for every a e @(Dj, D_,) one has 

P"(r<exp{f l [E(L2)+e]})  t J -~  ' 1 (3.82) 

To prove that 

P Q ( r = f )  p_~_ , 1 (3.83) 
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for f defined in (3.69), or, in other terms, that  

P o ( r < f )  t J ~ ,  ' 0  (3.84) 

we observe that, since L2 < L*, one has 

min max [-H(a) - H(Q(D l , D2)) ] > E(L2) 
(o:QIDI.D2I~Q\{Q{DI,D2J. QIDI- I.D21 } a E c o  

(3.85) 

Thus, for all sufficiently small e > 0, the set 

U ~(D'~, D;) 
D'I.D2~{DI,D2).{DI- I ,D2)  

cannot  be reached in a time exp{/3(E(L2)+ ~)} with probabil i ty approach-  
ing one as/3 ~ co. 

For  L 2 = l * + l ,  similar reasoning is slightly more complicated. 
Instead of (3.81) we introduce the set 

cK = ~ ( D i  -- I, D2) 

u {Q: (D,(Q), D 2 ( Q ) ) =  (D~, D2)and  min(Lt (Q) ,  L,_(Q))</*} (3.86) 

for which, for every ~ S e ( D ~ ,  D2), one has 

Po(r~lo,.o,_l<~clo,.o,.~\~}l~,~> 1) ~ , 1 (3.87) 

Moreover  (still L2 = I* + 1 ) we will show that 

e ~ ( z < e x p { f l h ( l * - 2 + e ) }  I ~,~,= 1) , 1 (3.88) 

for any 6ESa(D~, D2) and e > 0 .  Thus, noticing that 

h(l* - 2) < E(l* + 1 ) 

we can conclude that (3.82) holds true. 
Hence, to prove the proposi t ion we are left with the proof  of (3.77), 

(3.78), and for L 2 =  l * +  1 also (3.88). Actually, the crucial point is to get 
(3.77). The claim (3.78) will be a byproduct  of the proof  of (3.77) I-see the 
condition (C3) below].  

To derive the bound (3.77), we will look more  carefully at a possible 
way of reaching the set 0@ from a configuration a ~ 9 .  The trajectory will 
be characterized by visiting several special octagons (see Scheme 3.8): First, 
we use O.o~Q(D~,D2, I*, l*, 1", l*) to denote the s tandard octagon 
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__~ 1 I I 

I, ) 
-L1, ' 

representing our initial condition. We can suppose, without loss of 
generality, that it is centered--its upper left corner is the point ( -  1/2, 1/2) 
of the dual lattice. As usual, we use R(Dj, D2) to denote the rectangle 
circumscribed to Q0- The octagon (~l is contained in (~o; it has the same 
rectangular envelope R(D~, D2) and it differs from ~)o only the length of 
one of its oblique edges--namely, the first one in the clockwise enumera- 
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tion li, i =  1, 2, 3, 4, starting with the uppermost right one is of length 
1" + 1, 1, = l* + 1. The length of all the remaining oblique edges is again l*, 

01 ~ Q ( D , ,  0 2 ,  (l,)i= ,.....4, 11 = l* + 1, 12 = 13 = 14 = 1") 

Further, the octagon Q2 is obtained from ~), by replacing the oblique edge 
12 (of length 1") adjacent to the shortest coordinate edge by an edge of 
length 1" + 1. The octagon Q2 is thus again centered and has two oblique 
edges of length 1" + 1 adjacent to the shortest coordinate edge. Finally, the 
octagon Q3 is the element of Q(DI ,  D 2  - 1, 1", 1", 1", l*)  obtained from ~2 
by erasing the shortest coordinate edge (the vertical one on the right-hand 
side) adjacent to the oblique edges of length 1" + 1. The saddle configura- 
tions S~, i=  1,2,3, are obtained from Oi by adding a unit-square 
protuberance (the first one in lexicographic order--denoted by a dot in 
Scheme 3.8) to (1) the first (uppermost left) oblique edge in the case of Q,; 
(2) the second oblique edge (down on the right) in the case of Q2; and (3) 
one of the shortest coordinate edges--namely, to the vertical one on the 
right-hand side--in the case of Q3. 

Let us first consider the case L2 > / *  + 1. 
To prove (3.77), we follow ref. 8 and introduce an event o~ (of shrink- 

ing) starting from an arbitrary cr in @(D,, D2), taking place in an interval 
of time T, = T l ( 3 1 ) ,  

T l ( ~ l ) = e x p { 1 ~ ( 2 K - - h  + 6l )  } (3.89) 

with sufficiently small 6, > 0  to be specified later, and such that: 

1. If ~", takes place, then necessarily the set d~ is reached (in a 
particular manner) before the time T,(61). 

2. The probability P(o~,) satisfies the uniform lower bound 

inf P(#~) >/ct (3.90) 
a ~ c.qglDi, D2I 

with ct chosen large enough to satisfy 

lim (1 - ct)r'/r2 = 0 (3.91) 
f l ~ ,  

Here T2 = T2(32) (again, the constant 62 > 0 will be specified later) is 
given by 

T2(62) = exp{ f l [E(L2)  + 62] } (3.92) 

Splitting now the interval T2 into T2/T ,  intervals of length TI, we can 
argue that the probability that, during any such interval, one has not 
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reached O~ is at most 1 -  c~, since not reaching 0@ in time T t means that 
g~ certainly did not take place. Using now the strong Markov property 
and taking into account (3.91), we see that an attempt to realize the event 
g~ not later than T 2 will be successful with high probability for large 
fl--the equality (3.77) follows. 

Now, let us first describe the event g~ of shrinking in words; a formal 
definition will follow. 

Starting from any a in ~(Dt ,  O 2)  , w e  first descend to Qo. Then we 
stay for a time of the order exp{fl(2K-h)} inside ~(~o),  the basin of 
attraction of Qo, leaving it afterward through the saddle S~. After reaching 
S~ we descend to 0.~ in a unique step. Staying inside ~(~)l) for a time of 
order exp{/~(2K-h)}, we leave through $2, from which, again in one step, 
we descend to 02. Finally, again staying in ~(Qz) for a time of order 
exp(2K-h)},  we ascend to S3ESe(D l, D2). 

Let us turn to a formal definition of eg~. 
For every ~ in @(D~, D2) and every to~ 1~, let 

go~.,o = {ao = a, ~0 = to} (3.93) 

0 Namely, g,,.,o describes the event, after starting from a, of hitting at the 
moment to, for the first time, the octagon Qo. Now, consider the events 

O-ff l,d v-~'2, u O'ff2,d a~" 3, u ~i ! " ,  ~,~, , ~',2 , ~ , ~ ,  and ~ ' ?  , defined by (3.47)-(3.50) with N = 3 ;  

Qi, Q2, Q 3 = ~ o ,  Q , ,  ~)2; B,, B2, B3 = ~ ( Q o ) ,  . -~(0 , ) ,  ~ ( 0 2 ) ;  and 32, $3, 
S4=SI ,  S,_, $3. Moreover, we take t,--~-t-e=, [3=exp{f l (2K_h+3)}  and 
ta _-~ ta =-2 1. Further, we consider the time { o = e x p { ~ ( 2 K - h + 6 ) } = T t ( 6 )  
(6 > 0, sufficiently small, to be specified later) for the first descent from 
O@(D~, D2) to Qo. Finally, the configuration S, is one of the minimal 
saddles in O~(Oo) satisfying the equality 

min H(cr)= H(SI) 
a ~ &~(O.o) 

It is obtained by adding a unit-square protuberance to one of the oblique 
edges of Qo. Clearly, 

H(Sl) = H(~.o) + 2 K -  h (3.94) 

Introducing now 

~ -o . r  .... ~ ' ( " ; . . r  ~" ) ~  8 ~  = ( ~ . , ~ ,  , . ~ 2 . a ~ 3 , , ,  (3.95) 

[cf. (3.57)], we will suppose that the following conditions are satisfied: 

(C1) P(~C)<~exp(-eCt~) for a constant C>0 .  
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(C2) e(a~J 'd)>2,  j = 1, 2, for a constant 2 > 0  independent of ft. 

(C3) P(o~~ ,0 P(g~ exp( Z,0=l . ~> -ef t)  for every e>O and all fl 
sufficiently large. 

Let us notice that the equality (3.62) and the inequality (3.64) are satisfied 
in our case, that the validity of (3.66) immediately follows from an explicit 
computation, based on the definition of Metropolis dynamics, taking into 
account that the transitions Sj+t~ Q_j,j= 1, 2, 3, are just single-spin-flip 
events, and, finally, that the validity of (3.65) is immediate by considering 
a particular event leading from Qj to Sj+ ~ consisting of a set of subsequent 
h-erosions in the sites adjacent from the interior to the concerned oblique 
or vertical edge of Qo, Q~, and 02 (see Scheme 3.8). [The same argument 
actually proves also the stronger condition (C2).] 

From the strong Markov property we get 

P(c~s)=P(~~ P[(o'~l'u;o'~l'd'~'2"u; ~2"d" ~3"u)Ncff ] (3.96) 
, I ' ~ 1  ' 

Using (3.66) together with (3.65), we can infer, as we have seen, the lower 
bound (3.67). From (C1) and (3.67), for fl sufficiently large, we get (3.59), 
(3.60), and thus also (3.68). Finally from (C3), (3.68), (3.94), and (3.96) we 
deduce that 

inf P(g~)>>.~=-exp{-fl[E(L2)-2K+h+e]} (3.97) 
a E c-.#( D I ,  D 2 ) 

for every e > 0  and fl sufficiently large. The validity of (3.91) the follows 
from the bound (3.97)-- for any fixed 62 [see Eq. (3.92)] once we take, 
say, 6=61/2=62/4 for 6 from the definition of the times [i. 

Hence, to conclude the proof of (3.77), we only need to verify the 
conditions (C1)-(C3) above. 

To get the bound (C1), we suppose that for every j =  0, 1, 2 there exist 
a time t-~ and for every a e ~'(Qj) an event o:~ of escape from ~'(~j) such 
that: 

(i) The occurrence of ok~ implies that 

r~Oj~ < t:i (3.98) 

For every ~o>0 sufficiently small and for every fl sufficiently (ii) 
large, 

inf P(ok~) >~ 7~ exp(eofl) (3.99) 
,,~B, t u 

The superexponential estimate (C1) then directly follows from (3.98) 
and (3.99) with the help of the strong Markov property. 

822/75/3-4-7 
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To construct the event "j 8 , ,  we repeat, in the present simpler situation 
of escape from ~ = ~ ( O j ) ,  a construction similar to the one discussed 
above in the case of escape from ~. Namely, we choose time t,-'i-To + 1 
with 

To = (8,]+ 8K+ 2h) IAI/h (3.100) 

which is the time that suffices, starting from any configuration, to reach a 
local minimum. [see Eq. (3.5)], and set 

" j _  "o .~ . j , , , )  g , - ( g ~ . ~ ,  (3.101) 

where 

(3.102) 

and 

~0 ..ro= {ao=a ,  z0j< T o, or,= Qj for all t ~ [~0j, To]} (3.103) 

The saddle configurations ~i for j = 1, 2 (and 3) have already been defined. 
The configuration So is identical to S~ introduced above and it is obtained 
by adding a unit-square protuberance to one of the oblique edges of 0.o. 

The event ~ thus describes, starting from a generic a~(O_.j), a 
descent to ~)j in a time shorter than To and staying in Qj up to To. The 
event ~J'" simply consists of creating of a K-protuberance on an oblique 
edge of 0j .  

It is easy to see that, given 6 (see definition of t-~), the bound (3.99) 
is satisfied provided eo < 6/4. 

As we already mentioned, the condition (C2) follows from the defini- 
tion of ~ and Sz with ). = 1/[AI. With this probability the spin chosen for 
updating is the one on the unit-square protuberance of S~, Sz, respectively. 

The idea of the proof of the condition (C3) is as follows. Starting from 
any a~@(D~,D2), after a time of order To, (3.100), we descend to the 
octagon Q in ~(D~, D2) with high probability. Then, in a time of order 
exp{,8(2K- h + g)}, with g> 0 such that 

2 K - h +  g < h ( l * -  1 ) - g  (3.104) 

many K-protuberances occur with high probability, but no total erosion of 
any oblique edge of length l~> l* takes place. 

To provide a formal proof we introduce again a Markov chain--this 
time the chain {r/,,} obtained by looking at our process tr, at the times of 
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passing through octagons. The space of states of our chain is the set Y of 
all octagons Q in A, 

Let 

~o=0, 

We set 

Y = { Q ; Q c A }  

~,,=inf{t > %,, 5,r  Y} 

0,,+l =inf{t  > u,,: a ,~ Y} 

and, for every A c Y, introduce 

Let 

and 

~ n  = O'tsn 

qA = inf{n; q,, ~ A } (3.105) 

Y = { Q : ( D , ( Q ) , D z ( Q ) ) = ( D , , D , ) } = { Q ~ @ ( D , , D 2 ) }  (3.106) 

Y<={Q-Q(D,,D2,(I,),=,. . . . .4)EF:li<~I*,i=I ..... 4} (3.107) 

We will prove that for all e > 0 one has 

s u p P o ( ~ r < > e x p { f l ( 2 K - h + e ) } )  t ~  ' 0  (3.108) 
QEY 

Postponing the proof of (3.108), let us first show that for every 
t r ~ ( D t ,  D2), e > 0 ,  and fl sufficiently large, 

P,,(r r < exp(efl)) > 1/2 (3.109) 

This implies, with the help of the strong Markov property, that for every 
e > 0 ,  t re~(D~,  D2), and fl sufficiently large, one has 

P,,(r v > exp(2efl)) < (1/2) exp(~'#) (3.110) 

To get the lower bound (3.109), one again uses the property of time 
To--with a strictly positive probability independent of fl, starting from any 
configuration one reaches a local minimum in a time at most To. 

From (3.110) one gets, for every A c F, 

PQ(rA<exp(efl)VA) ~ , 1 (3.111) 
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Hence, by (3.111) and (3.108) we get 

ee(rr, < e x p { f l ( 2 K -  h + ~)}) 

Koteck~/and Olivieri 

,1  (3.112) 
/J' ~ o c  

for every e > O. On the other hand, with the same reasoning as that leading 
to (3.110), we obtain 

inf P,,(z ~ < To)>exp(-efl) (3.113) 
ae~(Dt,D2) 

for every e > 0 and fl sufficiently large. 
Now,  let us prove (3.108). This can be obtained very easily, once we 

take e in (3.108) sufficiently smal l - -namely ,  e =  g satisfying the inequality 
(3.104). For  every Q=Q(DI, D,_, (l~)i=t.....4) such that for a nonempty  
subset of indices, J c {1 ..... 4 }, one has lj >/l*, j ~ J, let Y< (Q) be the set 

Y < ( Q ) =  {Q'-Q'(Dt,D2, (l:),=,.....4):lj <~!/forali j~J} (3.114) 

We have 

p(Q-o Y\(Y<(Q)w {Q}))=Po(ao,r Y<(Q))<~exp{-fl[h(l*- 1 ) - e ] }  

(3.115) 

for every e > 0 and /3 sufficiently large. Indeed, the bound (3.115) follows 
easily by reversibility, in a similar way as Eq. (3.41), since for every 
Q ~ ( D I ,  D2) one has 

min maxH(a)>~H(Q)+h(l*-l)fl (3.116) 
to:Q~ Y\(Y<(Q)u{Q}) o~,u 

On the other hand, one easily sees that  for every e > 0 and fl sufficiently 
large, 

P(Q--* Y\{Q})=-PQ(ao, ~Q)>~exp{-[3(2K-h+e)} 

and, moreover,  

p(Q-o Y<(Q)\{Q})>~exp{-fl(ZK-h+e)} 

It is easy to see that, starting from any configuration cre Y< we reach the 
minimum ~)o, with high probabili ty,  in a time of order exp{[3h(l*-2)}. 
Indeed, in a time of the order 

T, = exp{ fl[h(l* - 2) + e, ] } (3.117) 

if e~ is sufficiently small, no K-protuberances (or K-erosions) or afortiori 
elementary events involving bigger increments of energy take place with 
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probability larger than exp(-e~fl )  for fl sufficiently large. Hence, with the 
same probability, the only possible elementary events are h-erosions and 
recoveries. Taking this fact into account, for all tr ~ Y<, we get 

P~(r0o < Tl) > e -p*" (3.118) 

The proof of (3.118) can be obtained by adapting the argument of 
proof of Theorem l(a) of ref. 11. 

We only present here the main idea leading to (3.118). Starting from 
any a E~(Q0), there is a probability larger than e x p { - f l [ h ( l * - 2 ) - e ]  } 
to completely erode, in a time l* - 1, any oblique edge of ~)o of the length 
~<l* - 1. Hence, in a time of order T~, we certainly have to reach Qo before 
T~ since the circumscribed octagon cannot grow and since afortiori we 
know from the inequality 

h(l* - 1 ) > ( 2 K -  h) 

that no oblique edge l>~l* can be completely eroded. 
From (3.112), (3.113), and (3.118) we get (C3). Namely, for every 

> 0 one has 
t- 0 

P(~~ o) = ~. P(g~ (3.119) 
t o =  1 

This concludes the proof of Proposition 1 when L2 > l* + 1. 
Consider now the case L 2 = I * +  1 (supposing always L~ > L2). The 

proof of Proposition 1 in this case is similar to the one in the case 
L2> 1"+  1. For any trE~(D 1, D2) we will again introduce an event oa'v~. 
The main differences can be summarized in the following two points. 

1. It follows from Lemma 3.3 that the minimum of H in 3~(D~, D2) 
is not achieved in ,~3 but in $2 (cf. Scheme 3.8) and in $2 defined as the 
saddle configuration obtained from Q~ by eroding the last L 2 -  2 = l * -  1 
unit squares adjacent to the coordinate edge of length L 2 - 1 = l *  [in 
other words, ,~_, is obtained by adding a unit-square protuberance to 
the coordinate edge of length l * + 2  of an octagon in Q(D1-1, 
D2,/*,  l* - 1, 1", /*);  see Scheme 3.9]. 

l*--- 3 
/G= 4 

L 1 G=~H 
Scheme 3.9 
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2. The path starting from $2 and reaching Q3 is no longer a pure 
descent, but it involves tunneling. We have 

H(S2) - H(Qo) = H(S2) - H(~)o) = 2h(l* - 1) - ( 2 K -  h) = E(I*  + 1) 

and 

H(S2) = H(S2)>  H(,~3) = H(Qo) + 2h(/* - 1) 

- ( 2 K -  h) + h(l* - 2)  - ( 2 K -  h)  

Let D I > D 2 = I * + I + 2 ( I * - I ) ,  i.e., L 2 = I * + I .  The configurations 
Qo, QI, Q2 and S~, $2, $3 are defined in exactly the same way as in the 
case L _ , > I * +  1. 

Again, we define for every t r~@(D~,  D2) the event 6"0, o [cf. (3.93)] in 
the same manner as before. 

Now, let 

Q,,  Q2 = Qo, Ql ; S,,  S,_ = S,,  $2 

and let f o = e x p { ~ ( 2 K - h + 6 ) } ,  t-~-G=exp{~(2K-h+&)},,,- -' and ta=' 1. 
We define 

s -~ . ~ l . , , ; ~ , ~ . , c o ~ 2 . , , ) n  ~ g,,  = (g,,.,~, ~ ~ , (3.120) 

[cf. (3.57) and (3.94)]. We get 

inf P ( # ' , . , ) > ~ - e x p { - j g [ E ( l * + l ) - 2 K + h + e ] }  (3.121) 
o" ~ f / (  DI .  D2) 

One verifies (3.121) in the exactly same way as in the case L_, > 1 " +  1. We 
only have to check, in our case when L2 = 1" + 1, the validity of the bound 
(3.119). 

However, the proof of (3.119) is even simpler since now the number 
of possible cases to be considered, namely the number of Q's in Y, is 
much smaller; in fact, E ( I * +  1 ) < h i *  and then no oblique edge of length 
bigger than 1 " + 1  can appear with high probability before the time 
exp{[JE( l*  + I)}. 

Finally, to conclude the proof of Proposition 1 we have to verify 
(3.88). We remark that entering into the set ~ [see Eq. (3.86)] from S,_ in 
one step means to descend to Q2. The octagon (~z contains a vertical edge 
of length l* - 1. Thus, to get (3.88), we reason in exactly the same way as 
when proving Eq.(3.118). We leave the details to the reader. This 
concludes the proof of Proposition 1. �9 
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In Proposi t ion 1 we were considering the shrinking of a s tandard 
octagon with D~ >/D2 > 31" - 2. Now we turn to the case D~ > D2 = 31" - 2. 
This means that  L2 = l* and 

E(L2) = E(l*) = h(t* - 1) (3.122) 

according to (3.14) and (2.18). 

P r o p o s i t i o n  2. Consider a s tandard octagon Q(D~, D2) with 

D~ > D2= 31* - 2 

Then, for all ~ > 0, one has 

Po~o~.o2~(rQio,_, o21>exp{f l[E( l*)+~]})  ~ , 0  (3.123) 

ProoL The proof  is obtained along the same lines as in the case 
L2 = / * +  1 above. The main difference (and simplification) is that typical 
paths to the saddle configurations in 5e(D~, D2) are now purely uphill, 
while the paths from 5 : (D , ,  D2) to Q ( D , -  1, D2) involve two, instead of 
one, tunneling phenomena.  

Let the octagons Qo, Q~, Q3 and the saddle configuration S, be defined 
as for L2 >/l* + 1. In particular S, is obtained from QI e Q(DI, D2, l* + 1, 
/*, 1" ,1")  by adding a unit square to the oblique edge of length l * +  1. 
Moreover,  let S* be the saddle configuration obtained from the centered 
octagon Q~ in Q(Dt - 1, D2, 1" - 1, 1" - 1, 1", l*)  by adding a unit square 
to its r ight-hand vertical edge of length l* + 2. 

We have H(S~ ) = H(S*)  = H((~o) + h(l* - 1). 
The minimum of H in O@(D,, D2) is now reached, again according to 

Lemma 3.3, in S, and S*. We define ff as in (3.86) and the shrinking event 
g~ simply by 

s - - 0  . l . u )  O 
~ = (go.~0, ~ 

where the event o~~ is, for all a ~ @ ( D , ,  D2), defined in terms of events 
go.,0, as in (3.44), while g ~  0 is defined as in (3.93); for t -~ we take 
t -~ = exp[h( l*  - 2) + 6] and 

: '  ~  r  

{ ,=exp{  f l ( 2 K -  h + 6) } 

Proposit ion 2 follows once we prove, in the present case, the bounds (3.88) 
and (3.119). 
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To get these two bounds we again argue as in the proof of (3.118) for 
the case Lz = l* + 1. In particular, we notice that now, entering into cg in 
one step actually means to descend to ~)~. The octagon ~)~ itself now has 
a coordinate edge (the vertical one on the right-hand side) of length l* - 1. 
Thus, in a time t=exp{ f l [h( l*-2)+6]} ,  with 5 so small that 

h(1" -2 )+6  < (2K- -h ) -3  

no K-protuberance (or elementary events involving even higher increment 
in energy) takes place with high probability and, as a consequence, the 
vertical edge of length l * -  1 will be completely eroded. In this way we 
reach the octagon 

Q * e Q ( D ~ -  1, D,_, l*, l * -  1, l*, l*) 

from which, in time t=exp{ f l [h( l*-2)+ 5] }, with the help of the same 
mechanism, we descend to Q3- We leave the details to the reader. �9 

Propositions 3A-3C describe subsequent shrinking once we reach a 
regular octagon Q(l*). In the first step it shrinks by cutting one arbitrary 
(coordinate or oblique) edge. 

Proposi t ion 3A. 
set of (not standard) octagons 

Q ( D i ,  D 2 , 1 * -  l, l*,  l*,  l*  - l ), D 1 

i.e., 

L l = l * + 2 ,  L~=L3=L4=l*  

Consider a regular octagon Q(l*). Let G~ be the 

= 3 1 " - 2 ,  D 2 = 3 / * - 3  

(modulo rotations) 

and Gz be the set of octagons 

Q(D,, D2, l* + 1,/*, l* , /*) ,  

L t = I * - I = L 2 ,  L3=L4=l  * 

Then, for any e > 0, one has 

PQII.)(zG, ~,a,. > exp{ fl[ E(l*) + 5] }) 

Dj = D 2 = 3 l * - 2  

(modulo rotations) 

, 0  (3.124) 
f l  ~ 

Proof. The proof is a straightforward adaptation of the proof of 
Proposition 2. �9 

Thus, starting from Q(I*), we reach an octagon with at least one side 
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shorter than 1". This condition is maintained also during the subsequent 
shrinking and we get: 

P r o p o s i t i o n  3B. Consider an octagon Q with the values 
d~, d2, D~, D2 such that 

either min(dt ,d2)<4l*-2 or min(D~,D2)<3l*-2 (3.125) 

Then, for every e > 0, 

Po(r  !>exp{f l[h( l*-2)+e]})  ~ .  ,0  (3.126) 

ProoL We give only a sketch of the proof, leaving the details to the 
reader. (See also the discussion of the growth event o ~cr~ introduced in 
Section 5.) We first observe that by the hypothesis, one has initially at least 
one edge of length l <  l*. In a time of order exp{fl[h(l*-2)+ &] }, with 

h ( l * - 2 ) + b < ( 2 K - h ) - 6  

the only elementary processes taking place are h-erosions and recoveries 
(no K-protuberance or even more unlikely elementary events) with high 
probability, for large ft. Hence, one of the minimal sides will be, with high 
probability for large fl, eroded, as follows again from the arguments of the 
proof of Theorem l ( a ) i n  ref. 11. 

Now, after erosion of any of these edges, we pass to another octagon, 
with dj, d2, Dr, or  D 2 decreased by one, in which there are still short 
( ~ < / * - 1 )  edges. Continuing this process, we finally reach the configura- 
tion - 1. �9 

Actually, the process of shrinking after reaching Q(I*) (resp. G~ w G2) 
may be described in greater detail. It will be useful to consider at once a 
collection of steps leading from a regular octagon to another regular 
octagon of smaller size. To describe it, we will introduce several simple 
geometrical notions. First, we want to define a cut operation of an oblique 
or coordinate edge. 

We say that we pass from Q to Q ' c Q  via an oblique cut if Q' is 
obtained from Q by eliminating all the unit squares adjacent from the inte- 
rior to an oblique edge of Q. As the result of an oblique cut the length of 
the cut oblique edge increases by one, whereas the lengths of the two 
coordinate adjacent edges decrease by one; d~ or d2 decreases by one. 

For example, an oblique cut of a NW-SE edge with extremes 3'1, x2 
in the octagon in Scheme 2.2 leads from dl ,  d2, /~, 12, 13, 14 to d~ - 1, d_,, 
/j + 1, /2, 13, 14. If we consider the corresponding values of the parameters 
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D~, D2, L, ,  L2, L3, L4 characterizing the same octagon, we pass to D~, 
D2, L t -  1, L 2 -  1, L3, Z 4. 

We define also a coordinate (horizontal or vertical) cut on Q as the 
elimination of all the unit squares adjacent from the interior to a coor- 
dinate edge. As a result of a coordinate cut the corresponding length of the 
cut coordinate edge increases by two, whereas the two oblique adjacent 
edges decrease by one; the length D, or Dz decreases by one. 

For example, by a horizontal cut of the edge with extremes x , ,  y, (see 
Scheme 2.2) we pass from D,,  D2, Lt,  Lz, L3, L4 to D,,  D 2 - 1 ,  L , + 2 ,  
L2, t3,  L4, or, equivalently, from dl, d2, 11, 12, 13, 14 to d~, d2, I , -  1, 12, 
/3, / 4 -  1. 

Since cuts of all sides will participate in the subsequent shrinking, it is 
useful to label all sides of an octagon Q in a unified way. Namely, we use 
L~,, i = 1 ..... 8, to denote the eight edges of Q by taking ~ =/ i ,  ~,.+ 4 = Li, 
i = 1  ..... 4. 

We say that a cut of Q (oblique or coordinate) is canonical if it acts 
on an edge L~j of minimal length, 

L~/= min 
i =  1,...,8 

L e m m a  3.5. Consider a regular octagon in Q(I), 1>2. Suppose we 
apply to Q sequentially a series of arbitrary canonical cuts (i.e., we always 
arbitrarily choose the edge to cut among the ones of minimal length). 
Then, for every l and for any such sequence: 

(i) After exactly 14 canonical cuts we always reach an element of 
Q(I- 1 ), namely, a regular octagon with the edge length decreased by one. 
We use ~ to denote the set of all sequences of canonical contractions 
from Q(I) to Q(I- 1). 

(ii) Any sequence M =  {Q~~ Q(I) ..... Q(13), Qll4~eQ(l_ 1)} e 
J [ ( l )  contains only "almost regular" octagons in the sense that the dif- 
ference in the lengths of any two oblique or coordinate edges in any Q e M 
is, for every Me~ at most 3, max s  Moreover, the 
minimal possible length of an edge during any canonical sequence M is 
/ - 2 ,  while the maximal one is 1 + 2. 

(iii) In any sequence MeMg(I) we perform exactly four oblique cuts 
in the NE-SW direction, four cuts in the NW-SE direction, three horizon- 
tal cuts, and three vertical cuts. There is one cut of an edge of length 1, nine 
cuts of edges of length 1 -  1, and four cuts of edges of length 1 -  2. 

ProoL The proof is a straightforward exercise. �9 
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We will now introduce some notions that will be useful to describe the 
time dependence during a typical shrinking of a subcritical droplet. 

Let to, t l  ..... r ...... be r andom times in which our process a,  visits (after 
a change) the set 3 of configurations containing a unique octagon: 

to = inf{t/> 0: a,  E ..~ } 

r,+l=inf{t>z,:a,E.~}, n = 0 ,  1,2 .... 

Given /, 2 ~< l~< 1", and e > 0, we say that a,  is an e-canonical contraction 
path from Q(I) to Q(I- 1) if 

t o = 0 ,  ao~Q(l), tr~,=Q I1~ . . . . .  0"rl,  = Q t l 4 )  

where (i) (ffo, Q ttl ..... Qtta~-Q(l-l)) is an element of the set ~a'(l) of 
canonical contractions,  and (ii) we have 

exp{fl[h(-_~ "~- l ) - e - l }  < r i + , - t i < e x p { f l [ h ( L  ~ " J -  l ) + e ] } ,  i =  1 ..... 14 

where # l ~ =  minj_~ 8 # ~ "  and ff'l/~ are the lengths of the edges of Q"~. - -  , . . . ,  - - ]  

Proposition 3C.  Let GI ,  G2 be the set of octagons defined in 
Proposi t ion 3A and let e > 0. Then 

ea"~o2(t-!>exp{fl[h(l*-2)+e]} a . . . .  , 0  (3.127) 

Moreover,  with probabil i ty tending to one as fl - ,  ~ :  

(i) Starting from G~ u G2 our process will follow the remaining 13 
steps of an e-canonical contract ion path up to Q(I*-1). 

(ii) Starting from Q(I* - l )  it will follow an e-canonical contraction 
path up to Q ( I * - 2 )  and so on up to Q(2). 

(iii) Finally, it will persist in Q(2) for a time t<exp{fl(h+e)} and 
then, after an h-erosion, it will proceed downhill to - 1 .  

ProoL The validity of (3.127) is a corollary of Proposi t ion 3A. 
The statements (i) and (ii) follow from Lemma 3.5 and the fact that 

in a time less than exp{fl[h(l*-2)+ e] }, for e sufficiently small, the only 
elementary events are, with high probabil i ty for fl large, h-erosions and 
recoveries. 

Statement  (iii) is immediate.  �9 

Remark. By Lemma  3.5 we get a lot of additional geometrical infor- 
mation about  an e-canonical contract ion path that  actually could have 
been included in the statement of Proposi t ion 3C. 
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Finally, we consider the much simpler case of growth of supercritical 
octagons. 

Proposi t ion  4. 
such that 

Let 

Let Q(D~, D2) be a standard octagon with D,_ ~< D~ 

= rOCo,.o,.+ l lwOID, + I.O,.~ (3.128) 

Then, for every e > 0, one has 

sup P , ( f < e x p { f l ( 2 J - 4 K - h + e ) } a n d f = f )  / ~ ,  1 (3.129) 
o E Q I D I , D 2 )  

where ? has been defined in (3.69). 

ProoL According to Lemma 3.3, we have 

inf sup H(tr) = min H(tr) = E(DI, D2) 
~o:aO ~ C_/ClDi,D2) tr E to tr ~ ~ C J ( D i .  D2) 

= H(Q) + 2 J -  4 K -  h (3.130) 

In the present case, L2> L*, the configurations in 6e(D I, D2) minimizing 
H on d~(Dl ,  D2) are obtained by adding a unit-square protuberance to 
one of the coordinate edges of an octagon in Q(D~, D,_). Consider the time 
t (6)= exp { f l ( 2 J - 4 K - h  + 6)}. It follows from (3.130) and Lemma 3.4 that 
if 6 is sufficiently small, any tr E O~\ :T  cannot be reached before t(6) with 
a probability approaching one as /3~  oo. Let us use ~)o to denote the 
octagon in Q(D~, D2) corresponding to our initial condition, and use S~ to 
denote the saddle in 6P(D~, D2) obtained by adding to Qo the first unit- 
square protuberance to its vertical right side. 

0 - -0  For every t r ~ ( D ~ ,  D2), let _ g~,.,0 and ~,,.io be defined as in (3.93) and 
(3.44) with [o=exp{f l (2K-h+cS)}  with 6 sufficiently small. We notice 
that, by Lemma 3.4, before the time t(6) one cannot see, with probability 
approaching one as fl ---, ~ ,  any J-protuberance occurring on a configura- 
tion #~@(DI ,  D2) that would differ from Qo. Otherwise we would touch 
the configuration 

a '  = # + J-protuberance 

with H ( a ' ) - H ( O _ o ) > ~ 2 J - 4 K - h + A  for some positive A. Thus we can 
apply the same argument as that used in the case L_, < L*. In this way it 
is easy to get (3.119). 

L 2 = D 2 - 2 ( I * -  1)>~L* 
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Now, consider the setup for introducing our auxiliary Markov chains 
with N = I ,  Q~=Qo,  B~=,~(0o),  $2=S~,  and S~ the saddle obtained 
from ~)o by adding a K-protuberance to one of its oblique edges, 

min H ( a ) =  H ( S I )  

For every a~(D~,  D2) consider the event (of growth) 

gg = t y  o . ~ . , , ~  ,~o.io, , n (~ 

where 

and 

= = 0 o ;  r = } 

e =  i,,.} 

[,, = exp{ f l ( 2 K -  h + 6)} 

As in the case Lz < L*, we deduce the analog of (3.97). Namely, for every 
e > 0 and fl sufficiently large, 

inf P ( # ~ ) > ~ a - e x p { - f i [ ( 2 J - 4 K - h ) - ( 2 K - h ) + e ] }  (3.131) 
o E c.~(DI, D2) 

Hence, by a recurrence argument similar to the one given in estimates 
(3.90), (3.91), with the help of the strong Markov property, we get 

P ~ ( r c . e > e x p { f l ( 2 J - 4 K - h + e ) } )  ~ , 0  (3.132) 

for every e > 0  and any t r e ~ ( D ~ ,  D2). Then, again with the help of the 
strong Markov property, we get the desired results in the same way as in 
the proof of Proposition 1 since, again, 

1 
P ~ ( f = I ) > ] - ~ ,  P o ( t ~ ( n , . o , ~ < r v , , o , . o : ~ \ l e l l f > l )  /~-~ ' 1 (3.133) 

Once more, we leave the details to the reader. �9 

4. G L O B A L  S A D D L E  P O I N T  

Similarly as in ref. 8, the proof of our theorems about "escape time and 
optimal route" are based on the existence of a set ~ '  with the following 
properties: 
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and 

(i) For every tr e d and any e > 0 one has 

iim P,,(z_! <z+_~)= 1 

lim P~('c_! <exp{//[h(D*- 1 )+e l } )=  1 
/ /~oc  

(ii) Every path w starting in - 1  and ending in + !  has to pass 
through the boundary Od of d defined by 

O d =  { t rCd ,  there exists x such that t r l x ~ d }  

(iii) The minimal energy in Od is attained for "protocriticar '  (global 
saddle) configurations a ~  ~ - - a  single unit square attached to the longer 
coordinate side of a standard octagon Q ( D * - 1 ,  D*)--wi th  the energy 
E* - H(Q(D* - 1, D*)) + 2 J -  4 K -  h. All configurations in Od that are 
not of this form have the energy at least h higher. 

As a first step toward the construction of the set d we construct for 
every configuration a (from a certain class) a configuration # such that 

S a <  tY 

for every standard S. Here we use the natural order on the set of configura- 
tions: 

o-,-~o" 2 iff { x : a , ( x ) =  + l } c { x : a 2 ( x ) =  +1} 

In other words, the configuration if, to be called the blown up envelope of  
a, is the "maximal" one (and actually even larger) to which we can arrive 
by applying a standard sequence. 

We begin by constructing ff in the case when ~ corresponds to a single 
droplet C =  C(~r) [i.e., the set C(a) is connected]. Suppose also that the 
rectangular envelope R(C) does not wind around the torus and consider the 
monotone envelope M =  M(C). The set M consists of monotonic blocks 
connected in corners, of the form shown on Scheme 2.1, where four edges 
meet. We say that such point is a bottleneck of the set M, once the intersec- 
tion of the boundary 0M with each of the two outside right angles touching 
in this point has at least along one side the length one (Scheme 4.1, where 
a thick dot indicates a bottleneck of set M; the points denoted by an arrow 
cease to be bottlenecks after "enveloping the components"). 
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I ~ / / / A  

% 
Scheme 4.1. 

Disconnecting now the set M in bottlenecks, consider the union M I1~ 
of octagonal envelopes of corresponding components. Some of the resulting 
points that were bottlenecks for M may not be such any more for the 
resulting set M t~. Considering only its bottlenecks, we repeat the proce- 
dure and iterate until the set of bottlenecks does not change. We use N(C) 
to denote the droplet constructed above from the set C and call it a string 
(i.e., a string is a monotonic droplet whose components, after disconnecting 
its bottlenecks, are octagons with oblique sides l~>~ 1--not necessarily 
larger than or equal to 2). 

The configuration ~ corresponding to the droplet N(C(a)) is the 
sought blown up envelope with the desired properties. 

L e m m a  4.1A. Let tr be a configuration with a single droplet C(a) 
contained in a rectangle that is not wrapped around the torus. Then (i) 
H(#) <~ H(a), (ii) tr-< # and Str ~( # for every standard sequence. 

ProoL Since taking octagonal envelopes of components decreases the 
energy, for our proof of (i) it is sufficient to show that 

H(a) >1 H(M) 

(we identify the droplet M with the corresponding configuration). We will 
show that there exists a sequence of configurations with decreasing energy 
and leading from a to M. 
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First, we show that  the holes inside = C(a)  (minus spins inside Oou, C; 
see Scheme 3.2) can be filled up. Consider the boundary  of the holes, 
OC\Oo,,C, and consider the lowermost  horizontal  line touching it. It 
touches it along a certain number  of segments, with the spins a round each 
of them necessarily taking the values shown in Scheme 4.2. 

�9 �9 �9 - - .  �9 �9 �9 �9 

+1 . . . . . . . .  I+ 
�9 + + . . .  + + + �9 

Scheme 4.2 

Notice, in particular, the + spins below the line. If any of them were 
replaced by - ,  the line / would be pushed lower. The spins denoted by 
dots are arbitrary.  Labeling the spins in the first row as a~, tz, ..... ak, aH 
and those in the third line that are not fixed as a m ,  trw, we get an energy 
decrease after flipping simultaneously all minus spins in the second row. 
Namely,  

k 

- - A H = 2 , 7 + . 7  y '  ( l + o ' i ) + K ( l + a l + a m + o ' 2 )  
i = 1  

k - I  

+ K ( l + a l ~ + a w + t ~ k _ t ) + K  y '  ( 2 + t ~ i _ l + a i + ~ ) + h k  
i = 2  

whenever k >1 2 and 

- A H = 2 J +  J(1 +al)+ K(at +an +t~m + a w ) + h  

for k = 1. In both cases its minimum is attained if all spins denoted by dots 
are minus, a i = - 1 ,  i = 1 ..... k, o" I = 0 " i i  = 17"111 = O ' I V  = - -  l ,  and we get 

-AH>~ 2 Y - 4 K  + h >O 

according to our assumption K<~�89 (cf. Lemma3.1) .  Flipping 
thus all considered minus spins above the line /, it will be pushed higher. 
I terating the process, we finally erase all holes in C, decreasing at the 
same time the energy of the configuration. Hence, we can suppose that 
0o~ C = OC. 

In a similar way we can prove that filling the droplet  up to M, we 
further decrease the energy. Namely,  consider a right angle, say { (x, y ) ~  ~2; 
/~x >/Xo, y/> Yo}, such that  C does not intersect its interior and such that 
it touches 3C in at least two distinct points. Consider those two such points 
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A and B whose distance is maximal (see Scheme 4.3---even though we show 
here A and B belonging one to the horizontal and one to the vertical side 
of the angle, nothing prevents them from belonging on the same side). 

Considering now an order on the path winding around aC (as in the 
proof of Lemma 2.1 ), take the portion 7 between A and B and the lower- 
most horizontal line 1 touching ~. If 1 does not contain the point (Xo, Yo), 
we can decrease the energy by flipping intervals of minuses just above 
the line in the same way as we did when erasing the holes of C. Iterating 
the procedure unless l passes through (Xo, Yo) and repeating then all with 
the leftmost vertical line, we finally replace ), by a corresponding segment 
of the boundary of the angle. Repeating the same for all relevant angles, we 
finally obtain the configuration M and prove thus (i). 

m d 

] 1------ (~,Uo) 

q 
l 

Scheme 4.3 

To prove (ii) we assume the contrary and consider a standard 
sequence S for which Sa.< ~ does not hold. Take the first site x e S outside 
C(8), xr Considering an arbitrary configuration ~ inside C(5) and 
( ( y ) =  - 1  for all vq~C(5), we will show that the spin flip r  - 1  ~ +1 
always increases energy. This is clear if x is not attached to the boundary 
of C(5). Taking into account that C(5) is a string, the local situation 
around x attached to 8C(8) is among the following ones (with the site x 
in the center of the square and up to rotations and reflections): 

- -  - -  �9 �9 

�9 �9 

A) B) C) 

822/75/3-4-8 
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Notice that the case A covers, for example, the situations 

while B, e.g., covers 

m �9 - -  - -  �9 - -  

A glance at the catalogue of stable situations in Section 3 assures us 
that in all three cases the minus spin in the center is stable irrespective of 
the values of spins at sites denoted by dots, in contradiction with the 
assumption that the spin flip ~ (x )=  -1--*  +1 decreases the energy. The 
stability in case A follows from (a) of the catalogue, B from (a), (e), and 
(g), and C from (a), (d), and (g). �9 

Notice that the string tY might still contain unstable lattice 
sites--namely thos plus spins that are surrounded by four nearest neighbor 
minuses. When applying a standard sequence S, one will eventually erase 
them, obtaining a union of octagons contained in C(#). 

Next we proceed to a case of a configuration tr consisting of several 
components. To treat this case we shall repeatedly use the following lemma 
to evaluate the sum of energies of two configurations by the energy of 
the configuration whose area of plusses is the union of areas of plusses 
of the two concerned configurations. For configurations a~ and o2 we 
define the minimum tr~ Atr 2 and the maximum tr~ v tr 2 with respect to the 
order -<. Namely, these configurations are given by taking the minimum 
and maximum, respectively, of a~ and or2 site by site. Then we have the 
standard inequality (a base of the F K G  inequality): 

L e m m a  4.2. For any try, tr 2 and the Hamiltonian (2.2) one has 

H(tr l )+ H(a2)>~H(a ~ v a2)+ H(tr I ^ tr2) (4.1) 

Proof. Using the equality 

a + b = max(a, b) + min(a, b) 

we get 

h Y, o , ( x ) + h  y~ ,~,.(x) = h y__, (,~, v ~  Y'. (,r, ^ ,~2)(x) 

(4.2) 
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The remaining two sums in the definition (2.2) of the Hamil tonian  consist 
of terms of the form o.(x)o.(y) and the inequality (4.1) will be verified once 
we show that 

o'l(x) O.I(Y) + o'2(X) O'2(Y) <~ (o.j v o.2)(x)(o. I v o.2)(y ) 

+ (o'l ^ o'2)(X)(o'l ^ o'2)(y) (4.3) 

If o.t(X ) = o.2(x ) we have an equality in (4.3) by (4.2). If o.l(x)r o.2(x), say 
o . , (x )=  + I ,  o-2(x)= - 1 ,  the inequality (4.3) follows from 

o,(y)--o.2(y)<..max(o.,(y), o .2 (y ) ) -min(o . l ( y ) ,  o.z(y)) �9 

Consider now a configuration o. whose set C(o.) has several com- 
ponents C, ..... Ck. Let us suppose that  the rectangles R(C , )  ..... R(Ck)  are 
not wrapped around the torus and let fi, ..... fk  be the strings obtained as 
blown up envelopes of the configurations 0., ..... o. k corresponding to 
droplets Ct ..... Ck. Using /t" to denote the relative energy with respect to 
the energy of - 1 ,  i.e., /4"(0.)= H ( o . ) -  H ( - 1 ) ,  by Lemma 4.1A we have 

H(o.) >f H ( f ,  ) + . . .  + H ( f k )  (4.4) 

If the droplets N 1 ..... Nk corresponding to configurations fi, ..... f k  were 
isolated, we would define f by taking C ( f )  = LJ~=, Ni. 

If the droplets NI ..... N~ are not isolated, we first glue them together 
and repeat the procedure. Namely,  if two droplets N, N'  have a nonempty  
intersection, consider the droplet  N u N'. By Lemma  4.2 we have 

H(N)  + H ( N ' )  >~ H(NL)  N ' )  + H ( N  n N ' )  

Let us suppose that  the rectangular envelopes R(N)  and R ( N ' )  are sub- 
critical (i.e., not winding a round  the torus and with minimal sides not 
exceeding D*). Then R ( N n N ' ) > ~ O .  Indeed, applying any s tandard 
sequence to N n  N',  we get a union of subcritical octagons of even lower 
energy. And the energy of a subcritical octagon with respect to the energy 
of the configuration - I  is positive. Thus 

/4(N) + / - I ( N ' )  >//-I(N u N ' )  (4.5) 

Using this observation,  we can consider the components  ~'~ ..... fi/k of 
N, u Nz ~J "'" w Nk and show that  

/-7(0.)/> H(~ ' ,  ) + -.- + H(Nt)  (4.6) 

once we suppose that the circumscribed rectangles of Nt ..... ~'~ are sub- 
critical. 
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Further, we say that two droplets h" and _~' stick together if there 
exists a sitc x ~ N u  * '  (necessarily touching c~" as well as c~.K[') and a con- 
figuration 6 inside ?~ and N '  such that, flipping - 1 ~ + 1 in x, we decrease 
the energy of the configuration corresponding to ~ ' w ~ "  and obtain a 
connected set ~ ' w . N ' w q ( x )  [here q ( x ) i s  the unit square around x] .  To 
avoid ambiguities, we choose the pairs of droplets sticking together as well 
as the particular site x to be flipped using some canonical order- -say ,  
lexicographic order of the uppermost  left corner of the droplet and the 
same order for the site x. Flipping the concerned site x and iterating the 
procedure, we obtain a set C'~ ..... C~,, of disjoint droplets such that neither 
pair of them sticks together. Clearly, 

and 

C' lw "'" u C ' , , , ~ N I u  "" u N k  

H(tr) >1 H(C'~) + . . .  + H ( C ' , )  

Supposing again that the circumscribed rectangles R(C'~) ..... R ( C ' )  are 
subcritical (and in particular are not winding around the torus), we repeat 
the same procedure as when we started from or. Iterating it, we finally get 
a set of disjoint A ~ ..... A,, such that no pair of them sticks together. If their 
circumscribed rectangles are not wrapped around the torus and are sub- 
critical, we say that the original configuration a is acceptable and define 
so that C ( 5 ) =  At  u . . .  u A , .  Clearly, 

H ( a ) ~ H ( 5 )  

Thus we get the following definitive result. 

Lemma 4.1B. Let a be an acceptable configuration. Then: 

(i)  H(5)<~H(a). 

(ii) Sa ~ 5 for every standard sequence. 

(iii) a ~(6 and the summary length of boundaries of all droplets of 
inside a component  Ai of C(6) is at least as large as the length of the 
boundary  of the circumscribed rectangle R(A~). 

6 It is easy to see that if such a configuration exists, one can take the configuration with 
plusses in NUN', but we do not need this fact. 
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ProoL The statement (i) was already proven during the construction. 
To prove (ii) we use the same argument as when proving (ii) in 

Lemma 4.1A. One has only to observe that, considering a site x attached 
to a component Ai of C(ff) and supposing that another component Aj is 
touching the unit square q(x), the spin flip t r(x)= - 1 - - .  +1 necessarily 
increases energy irrespective of the configuration inside A i and Aj. Indeed, 
if a configuration inside A iu Aj existed so that the energy decreases, the 
strings A i and A.i would stick together, which is not the case. 

To prove (iii) we first notice that in the first stages of the construction 
of # we only decreased the number of bounds--the length of the boundary 
of u~'~ is not larger than the boundary of the original C(a). Further, when- 
ever gluing two sticking components we do not change the length of the 
boundary. �9 

We say that a string A is ephemere if min(DI(R(A)),D2(R(A)))< 
3 / * - 3 .  Strings that are not ephemere energy larger than or equal to the 
energy of the standard octagon inscribed in their rectangular envelope. 

Lemma 4.3. Let A be a string that is not ephemere and R be its 
rectangular envelope, R=R(A), and Q be the standard octagon with 
R(Q) = R. Then 

H(A ) >~ H(Q) (4.7) 

ProoL The string A consists of certain number of octagonal blocks 
touching in bottlenecks. Actually, the inside blocks--those not touching 
the boundary of the rectangle R(A)--are in general "hexagons," while the 
two corner blocks--those touching the boundary of R(A)--are in general 
"heptagons" (cf. Scheme 4.1). The energy of a string does not change if we 
reorder the inside blocks. In the case when any corner block contains also 
the vertex of the rectangle R(A) (it is a "hexagon"), it can be interchanged 
with any inside block without changing the energy of the configuration. 

After a reordering some bottlenecks may disapear and one can 
decrease the energy of the corresponding configuration by replacing a 
group of blocks attached at points that are no longer bottlenecks by an 
octagonal envelope. Using this observation in an iterative manner, one 
can finally replace the string A by a string ,4 such that R(A)=R(A), 
H(A)>I H(A), and all the inside blocks of ,4 are unit squares. Indeed, 
starting from an arbitrary string A, one easily gets a string whose all inside 
blocks are rectangles such that, say, the vertical side of all of them is of 
length one. We decrease further the energy and get , /  by shrinking all 
inside blocks to unit squares and expanding in the corresponding manner 
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one of the corner blocks (see Scheme 4.4). This last step does not change 
the number  of corners while increasing the area of the droplet. 

1 
? 

F 

Scheme 4.4 

To  evaluate now the energy of such a droplet  A with d inside unit 
square blocks, we will consider two cases: (i) d~> �89 + V/5) l* + 3, or (ii) 
d < 3 l * - 2 .  These two cases cover all values of d once ( 3 - V / 5 ) l * >  10, 
i.e., if K >  7h. 

In the first case, the energy decreases if we replace all inside (unit 
square) blocks by a single hexagon with two oblique sides of length l*. 
Indeed, to prove this we have to show that  [cf. (3.18) and (3.6)] 

- h d -  ( d -  1 ) 6 K -  2 K >  - h d  2 + 2F(l*)  

or equivalently, using (3.6) and (2.18), 

P(d) =- d 2 - d(31* - 2 + 3r/) + 2(l* - 1 + r/) + [(1" - 1) 2 + q(21* - 1 )] > 0 

Taking into account  that q e (0, 1), the discriminant of the quadrat ic  
expression P(d) is bounded from above by 5 ( / * +  2) -~. Observing further 
that the term d 2 in P(d) has a positive coefficient, the sought inequality is 
fulfilled once d exceeds the larger one from the solutions of the equat ion 
P(d) = 0. This solution is bounded from above by 

1 [3l,+1+x/~(l,+2)]<..3+____~2 5 1 , + 3  
2 

The resulting string contains a hexagon that  is a t tached to (if any) two 
corner blocks in points that are not bottlenecks and thus the energy 
decreases if we replace this string by its octagonal  envelope. Its energy can 
be further lowered by replacing it by the s tandard octagon Q with the same 
circumscribed rectangle R(A) (cf. L e m m a  3.2). 

On the other  hand, if d <  3 l * - 2 ,  we consider the monotonic  set /0' 
constructed from ,4 as the union of the d x d square ~) circumscribed to the 
union of inside (unit square) blocks with the corner blocks and the union 
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of all their shifts, up to the distance d, along those sides of the rectangle 
R(A) they are touching (see Scheme 4.5). 

Using D to denote min(Dt(R(A)), D2(R(A))), the area covered by 
M\A is at least 

2 D d -  d 2 + d 

On the other hand, the droplet M has by 6 ( d - 1 )  less corners and the 
replacement of .4 by )~ is favorable once 

[ ( 2 D +  1 ) d - d  z] h > 6 ( d -  1 )K 

Scheme 4.5 

This inequality is fulfilled if 

(2D+ 1 - d ) h > 6 K = 3 ( l * -  1 +q)h  

Thus, it is enough to take d such that 

d < 2 D + 4 - 3 1 *  

Since D > / 3 l * - 3 ,  the inequality is fulfilled once d <  3 / * - 2 .  The energy of 
the droplet M is lower than that of its octagonal envelope and this in turn 
is lower than the energy of the standard octagon Q. �9 

Now we are ready to define the set ~d. 
Consider an acceptable configuration a and the corresponding ~ with 

nonsticking components A~ ..... Ak. Consider further the family of sets 
R1 ..... Rk, where Rf= Ai if Ai is ephemere; otherwise Ri is the rectangular 
envelope of Ai. Two strings A~, Aj are said to interact if at least one of 
them is not ephemere and the sets R~ and Rj (but not necessarily A~ and 
Aj) stick together.(or intersect). 7 

A family of strings AI ..... Ak is said to form a chain rg if every pair 
(A~, A i) of them can be linked by a sequence {Ai, ..... A~.} of pairwise inter- 

7 However, if A, and A t stick together, they necessarily interact. 
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acting strings from c.g; A i, = A i, A~, = A j, and A o and A i~., are interacting 
for all l = 1 ..... n -  1. 

Given a collection of chains c.g, ..... cg,, corresponding to the family 
At ..... Ak, we start the following iterative procedure: 

1. The chains cgj,I of the "first generat ion" are identical to ~ ,  
j = l  ..... n. 

2. Having defined oja~tr~, we construct  the sets RJ. r~ as the rectangular  
envelopes of the unions 

U R 

whenever cgJr) contains at least two sets; we put RJr~=R if 

We define ~#~r+ 1, as the maximal  chains of the family of sets {R~.r'}. 
I terating this procedure,  we reach a family of chains, each consisting 

of a single set. We call them complete sets of the configuration ~. It is easy 
to observe that  every complete set from the resulting family /~, ..... Rs is 
either a rectangle containing a certain amount  of original strings A t ..... A,  
or it is one of ephemere strings contained in the family At ..... Ak. 

We introduce J# as the set of all those acceptable configurations for 
which all complete sets /~, ..... /~s are subcr i t ical - - they can be placed in a 
rectangle that  is not wrapped around the torus and whose minimal side 
does not exceed D* - 1. 

In the remaining part  of the present section we shall verify the proper-  
ties (i)-(iii) of the set ~r It is easy to see that the proper ty  (ii) of ~r is 
obvious from the definition, while the proper ty  (i) follows from Proposi-  
tions 1-3. 

To  prove the proper ty  (iii) we first consider the configuration 
obtained by placing plus spins at all lattice sites in/~i  for e p h e m e r e / ~  = .,/~ 
and in the s tandard octagon Q~ inscribed i n / ~  f o r / ~  that is not ephemere. 
We will repeatedly use the bound 

H(a) >i H(d) (4.8) 

This follows, iterating with the help of Lemma4.3 ,  from the following 
lemma. 

Lemma 4.4. Let A' and A" be a pair of interacting strings and let 
be the configuration with the set of plusses coinciding with A'wA" .  

Suppose that  the rectangular envelope R of the set A ' w  A" is subcritical. 
Then 

H(~) >>. H(~) (4.9) 
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where ( is the configuration with plusses in the standard octagon Q 
inscribed into R. 

ProoL Suppose first that both A' and A" are not ephemere and con- 
sider the standard octagons Q' and Q" inscribed into the rectangular 
envelopes R' and R" of A' and A", respectively. Clearly, by Lemma 4.3, 
R(r If Q' and Q" stick together (i.e., Q' 
and Q" intersect each other or there exists a site x such that flipping 
the spin at x decreases the energy), the energy of the single droplet 
Q'w Q"u q(x) (resp. Q ' u  Q" if Q' and Q" intersect) is smaller than H(~). 
It can be further lowered by taking its monotonic envelope and, finally, 
by replacing it with the octagon Q. If Q' and Q" do not stick together, 
there does not exist a site x such that the unit square q(x) intersects the 
boundaries of both Q' and Q" along a bond and we can see that the area 
of Q is by at least 

min [ ( 2 ( l * - l ) - y ) ( 2 ( l * - l ) + y ) + ( 2 ( l * - l ) + y ) ( 2 ( l * - l ) - y ) ]  
)'E [0 . /*--  1] 

/> min [8(l*-l)Z-2yZ]>~6(l*-l) z 
y E [ O , l * -  1] 

larger than the area of Q' w Q" (see Scheme 4.6). 

Scheme 4.6 

Taking into account that 4F(/*)~> - 2 ( / * - 1 ) h ,  we get 

6(l* -- 1 ) h > - 4 F ( / * )  

and thus the energy decreases once we replace the configuration ~ by Q. 
(We are not even using the fact that the overall number of bonds in the 
boundaries of Q' and Q" might be larger than the number of bonds in the 
boundary of Q leading to an even larger decrease of energy.) 
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It remains to consider the case when one of the strings, say A", is 
ephemere. (See Scheme 4.7.) The only nontrivial situation is when Q' and 
A" do not stick together. When replacing the configuration ~ (with energy 
not lower than that of the union of Q' and' A") by Q, we have to compen- 
sate the loss of all corners in OA" by the surplus area I Q I -  IO'w,4"l  and 
surplus length of the boundary 10O'l + I&A"r- IOOl. Consider now the 
strips H and V obtained as the union of all horizontal and vertical shifts 
of Q', respectively. It is easy to see that the surplus length is at least the 
number N~, of horizontal bonds of 0A" in V plus the number N,, of vertical 
bonds of aA" in H. Each corner of OA" in V is linked with at least one 
horizontal bond of 0A" in V. The number of corners attached to Nh 
horizontal bonds in V is at most 6 ( N d 2 ) +  6. Their loss is compensated by 
the surplus of those Nh bonds since 

(3Ni, + 6) K <. 6NhK <~ NhJ 

Similarly for the vertical bonds in H. 

Scheme 4.7 

Thus it remains to compensate for corners not contained in the closed 
set H w  V. Consider the four quadrants--components  of (Hw V)L The set 
A" intersects at most two of them. We use U~, U2 to denote these two 
quadrants and Mi= UlnA", i= l, 2. Moreover, there is at most one 
quadrant of (Hw V)", say U~, both of whose sides intersect A". Without 
loss of generality we can suppose that M2 does not intersect H and the 
circumscribed rectangle R(M2) to M2 is m2xn2. Then there is at least 
min(m2, n2)(3l* - 2 )  of surplus area of IQI - I Q ' ~  A'I in the component of 
H\Q' that touches U2. On the other hand, at most min(m2, n2) 1" of the 
area may be lost from the portion of M2 sticking out of Q. Using b2 to 
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denote the number of bottlenecks in M_,, there is also at least b2(3/* - 2 )  
of surplus area of I Q [ -  [Q 'wA ' [  in the component of V \ Q '  that touches 
U2. At the same time, the number of corners in Mz (that are not at the 
boundary of U, and thus were not accounted for before) is at most 
6b,_ + 4(min(m 2, nz) - 1 - b_,) and we have 

6b,_K + 4(min(m2, n2) - 1 - bz) K 

~< [(3/* - 2) min(m_,, n2) - min(m2, n2) 1" + b2(31" - 2)] h 

To analyze the quadrant U~, we distinguish two possibilities. First, 
suppose that M~ contains at least one bottleneck, consider the quadrant 
U', with vertex in this bottleneck, that contains the octagon Q', and use nj, 
and n,, to denote the number of horizontal and vertical bonds in M~, 
respectively. The number of corners of M, is at most 3 min(nh, nv). At the 
same time the surplus of the area I (Q\(Q'  w A"))  n U' n ( H w  V)I is at least 
�89  To get the sought bound we just notice that 

3 
3 min(nh, n,,) K =  ~ min(nh, n,,)(l* - 1 + q ) h  

3 n h + n,, 
< min(n h, n~,) ~ l*h <~ - - 7 -  (3/ * - 2 ) h  

If there is no bottleneck of A" in U~, the portion of A" between two 
bottlenecks containing the set M~ is clearly contained in a half-plane P, the 
oblique boundary c3P of which passes through the vertex of U~ and is 
orthogonal to the axis of symmetry of U~. The number of corners 
of M~ not accounted for before is in this case at most 2 min(n~,, no). On 
the other hand, the area I ( Q \ ( Q ' w A " ) ) c ~ P " n ( H w V ) I  is at least 
�89 n,.)(31* - 2) and 

2min(nh,  n , , )K<~min(nl"n")  ( 3 1 * - 2 ) h  �9 
2 

To verify the. property (iii) of d ,  let ~ 0 ~ r  and a ~ r  be such that 
= a~~r ~r The mapping, assigning to a configuration ~ its complete sets, 

is monotonic in the ordering -< on configurations and the ordering by 
inclusion on complete sets. As a consequence, the value a(x) is necessarily 
- 1 ;  otherwise a e  sg would imply also r ~ ~r Moreover, the site x lies 
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outside of all complete sets /~t ..... /~., of a. Among the complete sets of 
there exists a rectangle R(D~, D,)  with the following properties: (i) R is 
supercritical, min(D~, D~)>~D*, and (ii) it contains the site x and several 
complete sets /~;, say / ~ , . . . , / ~ ,  of a; the remaining complete sets 
/ ~  + ~ ..... /~  of a are also complete sets of ~. 

Our  aim now is to prove that 

H(~) >~ H(Q(D*,  D*))  + h(D* - 1 ) - 4 K  = H(Q(D*  - 1, D* )) + 2 J - 4 K -  h 

(4.10) 

If /~ is winding around the torus, referring briefly to (4.8), the 
inequality (4.10) is clearly satisfied. Thus, let us suppose that /~ is not 
wrapped around the torus. Consider first the configuration ~, H(~)>~ H(~'), 
obtained by restricting the configuration ~ to the union U~=~ R~wq(x) ,  
where q(x) is the unit square centered at the site x [i.e., considering r to 
be plus on U~=I R ~ w q ( x )  and taking minuses outside; we will see in a 
moment - -Eq .  (4.11 )-- that  the energy decreases when skipping the subcriti- 
cal sets /~k + ~ ..... /~,]. Further,  consider the set C I~ consisting of the union 
of the unit square q(x) and those sets a m o n g / ~  ..... /~k that have a common 
edge with q(x). Let us take the rectangular envelope J?l~ of C ~~ if C ~~ is 
not ephemere a n d / ~ l ~ =  cool for ephemere C t~ and distinguish two cases: 
either the set / ~  is supercritical or it is not. [Notice that both C ~~ and 
/ ~  may actually coincide with q(x).]  

If ~1~1 is supercritical, we decrease the energy of ~ further by erasing 
all the remaining sets from R~,. . . , /~ that were not contributing to the set 
C t~ and considering the configuration ~to~ yielded by the restriction of ~ to 
the set Ct~ To see this, notice first that for any subcr i t ica l /~ ,  the energy 
of the restriction ~ of ~ to /~, ~i = ~ 1" .Rg, can be bounded from below as 

/4(~,)/> 2K (4.11 ) 

Indeed, if/~i is subcritical and nonephemere, and deno t ing / )2  = D2(/~i)~< 
DL = Dl(ff, i), we have 

/4"(r 2J(/)  j +/52) - hDi D2 - 2h(/* - 1 )2 

= 2JDI - hDi D2 + 2JD, - 2h(l* - 1 )2 

> ~ h ( l * - l ) [ ( O * - l ) 3 - 2 ( l * - l ) ] > ~ 2 K  (4,12) 

I f / ~  is ephemere, we have 

/4"(r ~> 2J(/32 + D 2 ) - 6 K D 2 - h D t ( 3 1 * - 3 ) + 2 K > ~ 2 K  (4.13) 
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once K<~J/3. Thus, the energy decreases if we erase the configuration in 
those/~i that are not contributing to C~~ bound 2K on the right-hand 
side of (4.11) is needed in case /~i is touching q(x) in a corner. 

Observing that/~, . . . , /~ 'k are not interacting, there can be at most two 
sets, say R t , R 2, contributing to C ~~ [i.e., intersecting q(x) along its edge]. 

Let us suppose first that R~ is the only set from /~ ..... contributing to 
C ~~ Recalling that /~ is subcritical and / ~  is supercritical at the same 
time, we infer that the set /~, must be nonephemere and, moreover, it is 
necessarily the rectangle (D* - 1 ) • D [or  D • (D* - 1 )] with D >/D* and 
with the unit square q(x) attached to its longer side. Consider the standard 
octagon Q~ inscribed into Rt. The configuration ~o~ restricted to /~t is 
actually the configuration a ~~ obtained as the restriction of a to /~ with 
the energy not lower than the energy of Q~ [cf. (4.8)-1, H(a ~~ >1 H(Ot) .  If 
q(x) does not touch C(~r~~ then 

R(~ ~~ = H(q(x)) + B(a I~ >~ H(q(x)) + H(QI) (4.14) 

and the bound (4.10) follows since H ( q ( x ) ) = 4 J - 4 K - h > 2 J - 4 K - h  
and H(O_I)>~H(Q(D*,D*-1)). If q(x) touches C(al~ then the mono- 
tone envelope of ~o~ is a union of a monotone  configuration M in /~ with 
the unit square q(x) sharing a common edge with M. Hence 

H( ~ ~~ >~ H( M ) + 2 J -  4 K -  h (4.15) 

Using the bound H(M)>~H(O_~) according to Lemma3.2,  we get the 
sought inequality. 

If there are two sets,/~, and/~2,  contributing to C ~~ then at least one 
of them must be ephemere (otherwise /~'t and /~2 would interact). Suppose 
first that /~ is nonephemere and K' 2 is ephemere. Considering the half- 
plane p containing /~ whose boundary contains the edge separating q 
from R~, then, necessarily, /~2 c R'-\p. Moreover,  the first row along the 
boundary of the half-plane p (the difference p'\p, where p'  is the half-plane 
p shifted by the unit vector or thogonal  to its boundary)  does not intersect 
the interior of /~_, [it contains only the square q(x)] ,  the square q(x) is 
affached to /~ in a corner, and the second row contains a single square, 
to be denoted ~, of/~2 (cf. Scheme 4.8). 

Since R ~  is supercritical, there exists a D x D* (or D * •  D) rectangle 
R* with D>~D* such that (i) R* contains qwR2,  (ii) R* is the circum- 
scribed rectangle of R* n ( /~ w q w K'2), and (iii) R* n K'~ is not ephemere 
[here, we use the assumption 1 0 K < J ,  which implies 10(1" - 1) < D*] .  
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R ~ 

Scheme 4.8 

J~2 

Let us consider the restrictions a,  and o- 2 of the configuration a ~~ to 
/~  and /~_,, respectively. Considering the site x and its three neighbor and 
nearest neighbor sites in the half-plane p, one can easily convince oneself 
that 

B(al)+~q(qwa,)>~B(~~ (4.16) 

On the other hand, 

H(a, ) >1 H(Q, ) >1 H(Qt ) (4.17) 

where O~ and Q~ are the s tandard octagons inscribed i n t o / ~  and /~ t  n R*, 
respectively, and 

H(q w a2) >1 H(q w R~_) (4.18) 

In the inequality (4.17) we are using the fact that J~t is subcritical. Using 
the first inequality from (4.16) for cr~ = Qt ,  we get 

H(Q,)+ B(qw R,_)>~O(Qtwqw R,_) (4.19) 

Our  aim now is to find a lower bound on the difference H(Q~ w q w R2) -  
H(Q(D*, D)). Expanding the droplet  Q~ w q w/~2 to Q(D*, D), we have to 
compensate  for the loss of all corners in /~2 by the surplus area (similarly 
as in the proof  of  Lemma  4.4). Using n~, and n,. to denote the horizontal 
and vertical sizes of/~2\q,  respectively, it suffices to notice that  the area of 
R*kR~ w qw R2 is at least min(nh, n,,)[D* - (31" - 3)] + 2(D* - 1 ). The 
last term stems from the rows containing the squares q and q. On the other 
hand, any horizontal  or vertical line through a corner o f / ~ , \ q '  contains at 
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most six corners of/~2 (a bottleneck counts for four corners). As a result 
we get 

H(Q~ t3 q w R 2 ) -  H(Q(D*, D)) 

> / - 6  min(nh, n,.) K +  h min(nh, n,,)[D* -- (3l* -- 3)] + 2h(D* - 1 ) - 2K 

~> 2h(D* - 1 ) - 2K (4.20) 

The term - 2 K  stands for two corners of /~2 in the last row (on the 
boundary  OR*). In the last inequality we used the fact that 6 K <  
h i D * - ( 3 1 " - 3 ) 1 .  Combining  this with (4.16) and (4.19) and the bound 
2J<hD*<~hD, we get 

H(~ ~~ - H(Q(D* - 1, D ) ) -  ( 2 J - h D )  

>I H(~~  * - I , D ) ) > _ . 2 ( D * - I ) h - 2 K - 2 J  (4.21) 

Thus, using the inequality 

2 ( D * - 2 ) h + 2 K > [ 2 ( D * - 2 ) + l * - l ] h > _ , 2 D * h > 4 J  (4.22) 

satisfied once l*>~ 3 [cf. (3.2)'], we get 

H(~~  * -  I , D ) ) > ~ ( D * - 2 ) h - 2 K >  2 J - 4 K - h  (4.23) 

To  get the sought inequality it remains to realize that H(Q(D* - 1, D))>/  
H ( Q ( D * -  1, D*))  since ( D * -  1) h < 2 J .  

Consider now the case when both /~  and /~2 are ephemere. For  the 
strings not to interact, at least one of them, say /~2, must be at tached to 
the rectangle q through a rectangle q, in the similar manner  as above. 
Using the assumpt ion 1 0 K < J ,  one can show that 

10(1" - 1 ) < D* (4.24) 

Observing now that  any ephemere string is contained in a strip of thickness 
3 l * - 3 ,  we can conclude that, to combine to a supercritical rectangle ,~t'~, 
the strips contairfing /~i and R2wq are necessarily or thogonal  to each 
other. Further,  there exists a D x D* (or D* x D) rectangle R* with D >/D* 
such that R* is the circumscribed rectangle of R* c~ (Rl w q u/~2). The sur- 
plus area in R* with respect to / ~ u q u / ~ 2  is at least ( D * - 3 / * + 3 )  2, 
while the number  of corners in the strings /~  and /~2 is at most  
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2 •  Taking into account that 2K<l*h,  2(D*-31*)>ID*, 
and -4F(1")>~2(1"-1)Zh,  we get the bound 

H(r ~~ -- H(Q(D* - I, D}) 

>/ - 2 J -  12(31* - 3) K +  (D* - 31* +3 )  2 h - 4 F ( l * )  

>/ - 2 J - 6 ( 3 1 * - 3 ) l * h  + 3D'h+ (D*-31" )  2 h + 2 ( l * - 3 )  2h (4.25) 

The sought inequality then follows from 

- 6 ( 3 1 * - 3 ) l * h + 3 D * h + ( D * - 3 1 * ) ' - h + 2 ( l * - 3 ) ' - h > 4 J - 4 K - h  (4.26) 

since 

( D * - 3 l * ) 2 + 2 ( 1 " - 3 ) 2 + 2 ( 1  * -  1)>(61")- '+  (1")2> 18(1")-" 

> 6(31" - 3) l* (4.27) 

Next, consider the case when /~tl is subcritical. Let us introduce 
/~)=/~t~l  if /~<t~ is nonephemere. Otherwise we take for /~IL~ the string 
N(C ~~ obtained as the blown up envelope of the configuration corre- 
sponding to CI~ Consider n o w / ~ )  and all complete sets among/~'t,..-, /~k 
that were not used for C <~ and construct from them the set of chains ~ 1  
of the first generation. A sequence cs r = 1 ..... m, of chains of following 
generations is obtained from it by iteration. Since the sets /~t,..-, /~k are 
mutually noninteracting, for every generation r we get a chain, say +t(~, 
consisting of a set /~c+~ containing the site x and certain subsets of 
K'~ ..... /~k, each of them interacting directly with/~+). The remaining chains 
cgl.+~, j = 2 ..... contain each just one complete set from those a m o n g / ~  ..... /~k 
that have not appeared in c.g<r~, p ~< r, in the preceding steps. Clearly, there 
is only one chain in the last generation, ~g~"'~= {/~l,,,I} = {~}. 

Let us consider the last set /~m among/~+), r = 1 ..... m, that is subcriti- 
cal and take the chain ~c~,~ with the complete sets in ~'~\/~1~'~ ordered in 
a particular way, say in lexicographic order of their left upper corner. Let 
us unite them, one by one in the given order, with the set /~'~ until the 
circumscribed rectangle is supercritical. Cutting off the remaining complete 
sets from the chain ~g~/'~, we get the chain ~l~'~ccg]~'~. Let us use R' to 
denote the last complete set that was attached to form the chain cdl~') and 

either the blown up envelope or the circumscribed rectangle of the union 
of complete sets from c~p~\{/~,}, depending on whether it is ephemere or 
not. Clearly, /~ and /~' are subcritical interacting sets with a supercritical 
rectangular envelope of their union. 
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The energy of the configuration ( can be evaluated by the sum of the 
energies of its restriction to /~ and - '  R ,  respectively, as 

H(~) >//~(~" ["/~) +/t(~" [" / ] ' ) -  2K (4.28) 

Indeed, the plusses of the original configuration ~ are inside of the non- 
interacting sets /~ ..... /~k, and q, and thus only when/~' is touching by its 
corner the square q (included in /~) may the additional 2K appear when 
joining the configurations ~ I"/~ and ~ ["/~'. Consider further, depending on 
whether /~ (/]') is ephemere or not, the set ~) (Q') defined as the set itself 
or its inscribed standard octagons. According to (4.8), one has 

/7(~ I" R) +/7(~ [" R') >//7(~) +/4(~)') (4.29) 

Let us observe now that there exists a D* • D* square R* such that: 

(i) It intersects both sets/~ and /~' in nondegenerate sets R and R', 
R = R n R * ,  and R'=R'nR*. 

(ii) It is the rectangular envelope of R u R'. 

(iii) It contains the intersection /~ n/~ '  (if it is nonempty). 

(iv) If/~ (R') is nonephemere, the same is true for R (R'). 

Since both sets ,~ and R' are subcritical, we decrease the energy of (~ (~)') 
to the energy of Q (Q') defined as Qc~R* (Q'~R*) for ephemere Q (Q') 
and as the inscribed standard octagon for nonephemere Q (Q'). Hence 

/-1(~)/> H(Q) + ,Q(Q') - 2K (4.30) 

Thus our task is to evaluate the sum of energies of two interacting sets 
Q and Q' (nonephemere standard octagons or ephemere string) whose 
union has R* as the rectangular envelope. Consider first the case when 
both Q and Q' are nonephemere. Replacing Q and Q' by the standard 
octagon Q* inscribed in R*, the sum on the right-hand side of (4.30) 
decreases by at least h(D* - 1 ), yielding (4.10). Indeed, if the rectangles R 
and R' just touch in the corner, the boundary has the same number of 
bonds as in Q*, while the surplus area of R* as compared with that of 
RwR' is at least D * + 2 ( 3 l * - 4 )  2. The sought bound follows once we 
realize that 

4F(/*) ~> -2(l*-l)'-h-2q(21*-l)>~ - 2 ( 3 1 " - 4 ) 2  h (4.31) 

If the rectangles R and R' are intersecting, the surplus area shrinks. 
However, each line of at most D* surplus sites lost in this way is compen- 
sated by surplus 2 bonds in the joint boundary of Q and Q' as compared 

822/75/3..4-9 
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with the boundary of Q*. If, on the other hand, the distance of the rec- 
tangles R and R', say in the vertical direction, is 1, there must exist at least 
two surplus horizontal bonds for them to interact, compensating thus the 
lack of two vertical bonds. 

It remains to consider the case With, say, nonephemere R and 
ephemere R'. If R and R' just touch in the corner, the reasoning is the same 
as when discussing the case of supercritical /~t~l above [cf. the bound 
(4.23)]. The cases of intersecting R and R' or of R and R' whose distance 
is 1 are then treated with the same modifications as when both R and R' 
are nonephemere. 

It is easy to observe that, except for the case when a s ingle /~  is con- 
tributing to C ~~ the lower bounds are always sharp- -a t  least once during 
the process of getting a lower bound we use a sharp bound. See, e.g., the 
lower bounds (4.23), (4.26), (4.27). As a result, we can conclude that the 
only configurations from 0 d  on which the bound can be achieved are 
those from ~ ,  the remaining ones having strictly higher energy by at least 
the minimal amount h. �9 

5. PROOFS OF THEOREMS 

Similarly as when proving the statement of Proposition 1 from the 
bound (3.77), we will get Theorems 1 and 2 from 

lim P_l(r,~.~,>~ T(g))=0 (5.1) 

which will be shown to be valid for all g > 0  with T(g)=exp[fl(E*+ g)] 
[cf. (2.24), (2.28)]. To prove (5.1), we follow ref. 8 and define, in a similar 
manner as in the proof of Proposition 3.1, an event g~ starting from 
an arbitrary a in ~r taking place over an interval of time T l =  
exp{fl[E(l*-1)+6]} [cf. (3.71)] and such that: 

1. If go takes place, then necessarily the set 0~r is reached (in a 
particular manner) before the time Tl. 

2. For the probability P(g,)  the uniform lower bound 

inf P(g,~) >/~ (5.2) 
a E ,~/ 

holds with ct such that 

lim (1--a)r2/r'=O (5.3) 

where T2 = T(~). 
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Using Eqs. (5.2) and (5.3), it follows by the strong Markov property 
that an attempt to reach d d  not later then T2 will be successful with high 
probability for large ft. Indeed, it is enough to observe that after splitting 
T2 into T2/TI intervals of length T,, staying inside of ~r for any of these 
intervals means that the event 8, did not take place. 

Once we have (5.1), we use the reversibility (Lemma 3.4) and refer to 
the property (iii) of the set ~r to get an upper bound on the probability of 
reaching Od in a configuration outside ~'. Noticing that, after starting 
from ~,  there is a finite probability to go to + 1 before returning to d (cf. 
Proposition 4), we get Theorems 1 and 2. 

Thus, our aim is to construct an event 8, such that (5.2) and (5.3) 
hold true. First, we present the idea for the construction of 8,; formal 
definitions will follow. We begin by recalling that d is defined in such a 
way that for all a e ~r one descends (energy decreases) to a set of nonin- 
teracting subcritical octagons in time of order To [see Eq. (3.100)]. Then, 
with high probability, in a time shorter than T, =exp{flE(L*-1)} we 
reach the configuration - 1 .  The first part of 8~ refers to this shrinking 
phenomenon. This stage of 8,, is called contraction and is denoted by 8 t'~. 

The subsequent stage consists just in staying in - 1  for a time of 
order exp{flE(L*-1)}; it is called waiting and is denoted by 8 I'''~. This 
(random) time spent in - 1  before the growth of a droplet up to the critical 
nucleus can be considered as a "global resistance time" as will be clear 
later; its introduction will lead to a gain of a factor exp{flE(L*-1)}, due 
to the "temporal entropy," in our lower bound for the probability P(8~). 
[Remember that E(L* - I ) < 2 J =  2 J -  4K and the energy for creating a 
plus spin in a sea of minuses is 4J+4K=4J-4K; hence, the time for the 
creation of a plus spin is, with high probability, much longer than 
exp{flE(L* - 1)}.] 

� 9 1 6 9 1 6 9  
Scheme 5.1 

Next, during the third stage, which we call embryonal and denote by 
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g(e), we create sequentially the first stable regular octagon 8 (of edge 2) 
Q ( l = 2 )  in 12 elementary (single-spin-flip) steps with increase of energy 
during the first 11 and with a loss of energy during the 12th. At each step 
the configuration will consist of a unique closed contour  ~7i, i =  1 ..... 12, as 
indicated in Scheme 5.1. Notice that  in g,,, from ~t up to the protocrit ical 
droplet,  all the octagons will be centered-- the i r  upper  left corner belonging 
to the dual lattice is located in the point ( - 1/2, 1/2). The dot in Scheme 5.1 
represents the origin. 

9 

9 

9 z 

to 8 2 

xo 8 

t O  

] ' ~  I=3 
1+1=4 

1 

3 3 3 4 

81 7 7 7 
| 

xx at tt I x= 

Scheme 5.2 

I ,  

x4 

5 

5 

x 5 

4 6 

61 t2  

x4 

x3 

13 

13 

Subsequently, there is a stage called regular, glr), during which one 
passes through regular octagons Q(l). The passage from an octagon Q(l) 
to the following one Q(I + 1 ) is by a sequence of canonical growth (reversed 
to sequence of canonical cuts; cf. L e m m a  3.5). Scheme 5.2 shows one 
particular sequence of octagons on the path from Q(I) to Q(l+ 1) (here 
l =  3). Namely,  the octagonal  droplet  yl i), i =  I ..... 14, is obtained from the 
preceding one, ~ i - ' ) ,  by adding the ith edge as indicated. Notice that 
71~4)_,/+te=,,(0) Q ( I +  1). Further,  use S(l) to denote the saddle obtained by 
erasing from Q(l+ 1) the last (in lexicographic order)  1 contiguous unit 
squares adjacent from the interior to its upper  right oblique edge. More  
generally, we denote by SI ~) the saddle configuration obtained by adding to 
~,~J-') the first unit square of the ith edge. 

The path, visiting 14 octagons indicated in Scheme 5.2, obtained in 

8 Recall that we identify an octagon Q with the spin configuration where the plusses are 
precisely the spins inside Q. 
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this way is almost monotonic path-- i t  consists of a series of elementary 
transitions of the following form: 

I. First, starting from an octagon Q('), say Q t~)= ~I,- ~1, a monotonic 
ascent to S I') (a saddle between Q(') and Q(2)). 

2. Then a descent to a configuration Q(Z) (again an octagon), higher 
then Q(l): H(Q(2)) > H(Q(I)). 

3. Another ascent to S 12) with H(S(2))>H(S (l)) and so on (see 
Scheme 5.3). 

5,( 2 ) 

Q(O 

Scheme 5.3 

To get a lower bound on the probability of ~(r), we suppose that a 
path in ~(r) stays in the basin of attraction ~(~,~e- ,)) [see (3.7)1 up to a 
random time shorter than exp{ fl[H(S~ i- ~))- H(yl i- 1)) + e] } with e > 0 
chosen sufficiently small; then it ascends to SI ;) and afterward descends to 
7~i); in the next step it stays in .~(y~g)) up to a time of order at most 
exp{fl[H(S} ~) -H(y~ ~) + e] }, then it ascends to SI i~ and so on. 

The above times are called resistance times. Their introduction in the 
definition of g(r) (and in the subsequent stages) is motivated by the 
necessity of exploiting the "temporal entropy" to get a correct lower bound. 
It turns out that by the above choice of the resistance times one gets 
exactly the needed factors. Notice that since the minimum of H on O~(y~ i)) 
is reached in SI ~, the probability that during the time interval of the order 
exp{flEH(Sli))-H(71il)]} the process does not leave ~(yl  i)) is almost 
one (here we are using the reversibility of the process; see ref. 14 and 
Lemma 3.4 above). On the other hand, by the particular choice of a 
sequence of elementary transitions in the definition of g(r), the process 
enters the basin of attraction ~'(7~ ~)) through the saddle point S~ i). The 
combination of these two facts is crucial to get a lower bound that is 
sufficient for the event 8 to satisfy the condition (5.3). 

As already mentioned in the Introduction, a "local" criterion can be 
formulated that allows one to choose a sequence of elementary transitions 
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to yield a correct probability estimate for the event o~tr~: the passage to a 
successive minimum of H has to occur through a saddle whose height is 
exactly that of the minimum of H on the boundary of the basin of attrac- 
tion of the successive minimum. We stay in the basin of attraction of this 
new minimum for a "typical" resistance time and then pass to the next one. 

As we will see later, such a criterion can be generalized to non-almost- 
monotonic sequences of steps appearing in the subsequent stages of ~, 
provided we substitute the basin of attraction ~ (Q)  of a single octagon Q 
by its generalization ~ ( D l ,  D2) [see (3.10)]. 

The "resistance" inside ~(D~, D,)  will be against a mechanism of 
escape that is no longer monotonic (in energy). Actually, it is exactly the 
escape described in the shrinking event o~ introduced in the proof of 
Proposition 1 [see the definition (3.95)]. In addition, the descent from a 
saddle [in 3~(D~, D2)] to the corresponding minimum will involve some 
tunneling phenomena (passing through some local saddle points). 

The stage o ~t'~ ends once we reach the octagon Q(I*). After this there 
is a stage that we call transient and denote by o ~t'~ during which, following 
a very special (not almost monotone) sequence of octagons, we reach a 
standard octagon with Lt=L2=I*+2,  namely, the first one with 
min(L~, L2)> l * +  1. To describe the "transient," which turns out to be a 
somewhat complicated mechanism, we need to define several particular 
octagons. To this end we will make repeated use of drawings. 

The droplet Ql~ is the regular (and simultaneously the smallest 
standard) centered octagon with l=1". The configurations 0_I~.1,1o, 
i =  1, 2, 3, are the octagons obtained by adding sequentially to QI~ the 
edges 1, 2, and 3, as indicated in Scheme 5.4. We notice here that Ol~.!l. and 
Ol2~ respectively, correspond to Q* and QI introduced in the proof of 
Proposition 2. 

Scheme 5.4 

1 
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The configurations S}~o, i =  I, 2, 3, are the saddles obtained by 
adding to Q~.~.~ the first unit square of the ith edge. Further, let 
aco) = t~3) ~-§  (=s tandard  octagon with L ~ = I * + I ,  L2 = l * )  and let 
Q~/)§ ~,~., i =  1, 2, 3, be the octagons obtained by adding sequentially to 
Q , - I I  the edges 1,2, and 3 as indicated in Scheme 5.5. Again, the con- /* + 1,/* 

figurations S~.I+ I./" are the saddles obtained by adding to Ql~.-+tl~t. the first 
unit square of the ith edge. Similarly, let r _ Q~3~+ ( = standard ~1~/* + l . l* + 1 1,1" 
octagon with Lt = L 2 = l * +  1) and Q}'2+~j.+,, i =  1, 2, 3, be the octagons 
obtained by adding sequentially to Ql~.+t~j.+ l the edges 1, 2, and 3 (cf. 
Scheme 5.5). Again, the configurations S~'2+ ~.t*+, are the saddles defined in 
the same way as S~9+ 1./-. 

' "  1 / FI 

(i) (i) 
Qt.+t, t  o i =1,2,3 Qt%t. ~'+1 

S c h e m e  5.5 

S 
i =1,2,3 

1 
In the first part of the event gt'~ our process will stay in 

@(D~ = D2 = l*)--the generalized basin of attraction of the standard (and 
regular) octagon Q(D~ = D2 = / * )  that has been defined in Eq. (3.10)~for 
a time of order exp{ f lh ( l*  - 1)}. Then, after visiting for the last time Q~~ 
it will pass to QI~.!,. through S~.~,., staying subsequently in ~(O~.!,.) (the 
true basin of attraction of Q~.!~.) for a time of order exp{/~h(l* -2 )} .  Then 
it jumps to QI2.1,., passing through SI~!,.; it stays in ~,(O~z!,.) for a time of 
order exp{/ /h( l*-2)} and then it passes again to O~3!,. through S~3!,.. 
l-Notice that when we say "the process stays in a certain set of configura- 
tions for a time of order exp{/L4 }" we actually mean "it stays there for a 
random time shorter than exp{/~(A + e)} with a suitable, sufficiently small, 
positive ~."] 
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This first part of r can be better understood by observing the 
landscape of the energy depicted in Scheme 5.6, 

~ )  / \ / 

/"<'-"'7-<,,. " ' " ' ~  

/ ( 2 . ~ -  h)  

I NNN~ j " " "vI ' , I -  

Qt ~ 

S c h e m e  5.6 

The second and third parts of  ~ul, consisting of the transitions from 
the octagons Q~Ol+ 1,/. to Of~ 1,1.+1 and from n ~~ ci~01 ~ - - / * + 1 , 1 " + 1  t o  ~ - 5 / * + 2 , / * + 1 ~  

respectively, are very similar. 
Namely, we stay in -,,-,~o~ ~ t l e t . + l , t . )  for a time of order exp{flh(l*-1)}, 

,,-ic~l through ~ 1  and stay in ~ l  then pass to ~ - + l . t -  ~t .+l , t* , -~(Qt-+lj-)  for a time 
exp{flh(l*-2)}; after that we go to Q)2j+ ~.," passing through ~,.~2~+ ~.t. and 
after staying in c2~ D~(Qt.+~.t.) for a time e x p ( 2 K - h ) }  we pass through 
S(31  to r l ( 3 )  

t * +  l , t* ~.";1. + l , t* + 1 �9 
After reaching the octagon clio) the last part of 8 u) starts; it Y - t * + 2 , / * +  1 '  

,-,io) . via a mechanism that will be repeated consists of a transition to let. + 2.,. + 2 
several times during the subsequent stage of  ~ that we call standard and 
denote by ~,ts). In other words, the last part of 8u) can be considered also 
as the first part of 81~). 

During ~'~) our process will visit a sequence of growing standard 
octagons inscribed in squares or  almost squares of  the form 

Lt, L2=L, L+ 1--+L-t-1, L--+L+ 1, L +  1--+ L +  2, L +  1 .... 

from L~ = 1" + 2, L2 = l* + 1 up to Ll = L*, L2 = L* - 1 [cf. (2.17)]. These 
transitions are performed via a canonical (not almost monotonic)  sequence 
of (not standard) octagons. Consider a standard octagon with L~ = L2 = L, 
1 " +  2 ~< L ~< L* 1 and with upper left corner in ( - 1 / 2 ,  1/2); call it nlol - -  ~ L , L ~  

f l u -  ~l the i =  1, 2, 3, be the octagons obtained by adding sequentially to ~c,~ 
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edges 1, 2, and 3 as indicated in Scheme 5.7. Similarly, we call ~L+  t .L= ~ L . L n ( ~  n(31 
the standard octagon with L ~ = L +  1, L2=L, 1"+ 1 <<.L<~L*-1, and 
with left upper corner in ( -  1/2, 1/2); n m  i =  1, 2, 3, are the octagons Y ~ . L +  l , L ~  

~) the edges 1, 2, 3 as indicated in obtained by adding sequentially to Q~+ j ,  
Scheme 5.7. The configurations v , )  i =  1, 2, 3, are the saddles obtained 

~ L I , L  2 ' 

from Q"  ~ by adding the first unit square to the ith edge. L,  L~. 

(i) Q::, 

i I  i [  ] 
3 

1 

1 

1 

1 

• 

The canonical mechanism to pass from a standard octagon, say n (~ ~:~ L , L '  

to the following one in the sequence, n(~ is as follows. We stay ~ - ~ L +  I . L ~  

in N ( D I , D 2 ) ,  D ( = L + 2 ( I * - I ) ,  D,_=L+2(I*-I) ,  for the time 
exp{flE(L)} [see Eqs. (3.71) and (3.72)]', then we jump to S I~IL.L and then 
in a time - - . e x p { ( 2 K - h ) f l }  we pass to the next standard octagon n(~ Y . ~ L + I , L "  

This transition from S I'~ to Q~~ is not a purely downhill path, but L , L  

involves two tunnelings. The case of the transition n ~~ --, n ~~ is g L + I . L  ~ff .L+ I . L +  1 

completely analogous: in general the resistance time in @(D~, D2) with 

(i) / 
.t, $I'. '.'., ,3, . . . . . .  Z 

. . . . . . . .  . . . . . . . .  s2. L . . . . .  / l  E 

........ . ....... 

- (L) 

S(l) / "L.L O'_". \ / u 
L - I . L  ~(2) [ "L,L ~ . . . . .  ]I 

5L -t, L ~(3) / 01~ 
-*L+I,L L - I ,L  

--L -1, L o1% oI:'  
Scheme 5.8 

/  211113  
Scheme 5.7 
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D~ =L~ + 2 ( l * -  1) and D2=L2+2(l*-  1) is exp{flE(L~ A L2)}. A trans- 
ition from QL.C to QL+ ~,L for L>~I* + 2  is represented in Scheme 5.8. 

A similar picture describes the transition ~L+~176 l,L-'* ~1.+'3(~ ,,L+ ~" In 
Scheme 5.9 we represent the transition from Q(Ol ~ to c~(o) / + ~ , / * +  1 Y--I* + 2 , / *  + 2~ 

namely the last part of the transient event, 

~,,> / ~"+,."+, Q,<:+>..+/~"7":+'  o<'~.'>. X"-~ 
4<.'+) .,.+, ~,'+,.,'+, 4<.~.),.,.+, 

Iol 

QI'+2,1~ 1 

Scheme 5.9 

We summarize the description of the transient event ~(') in Schemes 
5.10 and 5.11. 

i ,,1~ I 3 9 

t*--4 

Qt ~ 

11 ~ I II 514 4 4 6 8 

I-I~~ ,o ,o ,~ 
Scheme 5.10 

9 

3 9 

2 7 

2 7 

2 7 

1 G 8 

6 8 12 

8 12 

12 
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"T ~.+ 

o~ 
T ~.+ 

~ - 7 2  . i  g ,  

. ~  "T 
~l ,e. 

?; 
d ? '  "T 

" - : . j  
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Before passing to a formal description of the event o ~, we would like 
to make  several additional observat ions concerning the events r and Ct~l. 

1. The transition },~.32 t ~ S ( l * )  --* Of~  ---, Sl~.l,. ~ . . .  is not a lmost  
monotonic.  

t ~ { J }  2. The sequence ~t..t-,tS{l} ,~..t.,r~{21 ~z..t-r~{31 is not the analog of z t - + l , t . ,  
Q{2} n{3} ~.+L~-, ~ - + l . ~ -  or, more  generally, of :}{~} r}{2} :}{3} for the ~ L I , L 2 '  ~ L  ,L2~ ~;$L ,L2 

subsequent values of L I ,  L2. This part  of the event ~{' provides a good 
example to clarify the local criterion we referred to before. In the sequence 
a}O!,., gl l?, . ,  Qp.!,., and g12.1,, we always respect the condition of passing 
through a saddle S such that  H ( S )  is the min imum in the boundary  of the 
(possibly generalized) subsequent basin of attraction. 

To  clarify better this point, let us suppose that  we defined the first 
,~{0} _. in a different way. part  of o ~{'} concerning the transition u/. ,~. Q~Ol§ 

Namely,  instead of Qp2,. we take the sequence of octagons QI'2j. ,  i =  1, 2, 
and 3, defined in the usual way according to Scheme 5.12. Notice that 
O{l} :~{1}  whereas [~(2} /}{2} /'~{3} =Q13}/.=t3{o} and  /}{i} 

I*,1" 7-  ~ 1 " . 1 " '  ~.1"*.1" ~ ~:~1",1"} ~ 1 " , 1 "  , - -  ~ / * +  1 . / * }  ~ 1 " , 1 "  
. n {i) would be the analog for L~ = L,  = l* of our ~L~.L,~ as they are defined for 

the subsequent L~, L2's. 

i II 

S c h e m e  5 . 1 2  

1 
If we define Sl~.l/. as the saddle obtained by adding to QI~.~I } the first 

unit square in the ith edge, we can represent the landscape of energy for 
this different transition as indicated in Scheme 5.13. 

We observe that  in the mechanism described in Scheme 5.13 what gets 
wrong with respect to our criterion is the transition a~' l ,"  ~ S~2"!, �9 ~ alz!t  ", 
since the min imum of H in c?~(a l2 ! , . )  is reached in gl".!,- and not in S12.!,.. 

, - , , o l  . QlOk __. n { o ,  3. In the sequence ~d1.+1. , .~ ~,/ '+l "*:~/*+2.1"+2 we could 
have followed another  path without violating our local criterion. This is a 
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. -(a) (3) . . . . . . .  ~ h ( t - 1 )  s,-~.-=s m .  

%~." / ~(2) V ~ 2 ~ - h J \  / 

lUkg _ j ) x _ . r  I;1" =- I*,1" (0) 

/ "t:,','.," Q'%'"" 

/ Q!O.!. 
I;1" 

Scheme 5.13 

consequence of a degeneracy of the min imum of H in @(D, = 3 1 " - 1 ,  
D2=3l*-1) and in ~(D~=31*,D2=31*-l); as we already noticed in 
the proof  of Proposi t ion 2, this min imum is reached for L~ ^ L2 = l * +  1, 
both in $2 and in $2, where $2 and $2 are saddles defined during the proof  
of  Proposi t ion 1 and represented in Schemes 3.8 and 3.9, respectively. To  
be more  precise, consider the sequence 

~ ' "  + , . , "  ,,~( ' ) ~ ,"  + , . , ' r 5 ' 2 '  _= Q~Z.)+ ,./.,  ~ / .  + , . / . -  ~ , .  +, . / . ,  0 , .  +, . , . ,  o , .  + ,.,., 0 , .  + ,./. 

similarly to O~! , . ,  ~)~2.1,., O~! , . ,  S~.!,. ,  ~2 ! / . ,  and ~3! , .  (see Scheme 5.4) 
Then, for D, = 3l* - 1 = D 2, the configuration S~2.1t. coincides with ~2 (see 
Scheme 3.9) and 

min H(a) = H(,S~2.~+ ,,,.) = H(~z.)+ ..,.) (5.4) 
o" ~ O B ( D I , D 2 )  

A similar s tatement is true for D] = 3l*, D 2 = 31" -- 1. 

4. Our  mechanism of growth is, in all the stages, exactly the reverse 
of the best mechanism of shrinking described in the proof  of Proposi-  
tions 1-3. 

To  clarify the relation between the notat ion we used in Proposi-  
tions 1-3 to describe the shrinking phenomenon  (following the drift) and 
the present construct ion for describing the growth up to the critical size 
(against the drift), consider, for example,  a s tandard octagon Qo with 
L2 = L +  1, L, = L. We recall that Qs is again a s tandard octagon with 
L~ = L 2 = L .  We have 

Q,S, :___ r),o) __ Q3 
L . L - -  l g L ,  L - -  

Q('~ = 0 . , ,  n (2 )  - - n o l  - 

- ~ L , L  - -  
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5. Looking at Scheme 5.10, one easily realizes that the relative 
heights in energy of S~].L 2, SI2~L~.L2, and S 131L,,L.,, in the transitions from L~, 
L2 ~ L'~, L~ in 8 I'l, namely, in the transitions l*, 1" ~ / *  + 1, 1" ~ l* + 1, 
/* + 1 ~ / * + 2 ,  l* + I ~ l* + 2 ,  l * + 2 ,  change according to the value of 
L', ^ L~. 

For  L'I A L~ = / * ,  the saddle S 131 is the highest one. 
For  L'I A L~, = 1" + I, the saddle S 121 is the highest one. 
For  L'~ ^ L~ = l * +  2 (or larger) the saddle S ~1 is the highest one. 
In any case the differences in height between the saddles (that change 

sign passing from L'~ ^ L~ = l* to L'~ ^ L~ = l * +  2) are, in absolute value, 
of order qh with q <  1 defined in Eq. (2.18). 

6. The introduction of the generalized basin ~ ( D t ,  D2) in place of 
the usual .~(Q) (that was needed in 8 I'l and ~l.,.I) is strictly related to the 
presence of a non-a lmos t -monotonic  path. 

The next to the last transition in the s tandard stage ends with the 
format ion of a s tandard octagon with Lj = L* and L 2 = L* - 1. 

The very last transition is then just a flip of a minus spin adjacent 
to a long coordinate edge in the s tandard octagon with L~ = L *  and 
L2 = L * - 1  (namely, the creation of a unit-square protuberance  adjacent 
to that edge). In this way we form a global saddle ("protocri t ical")  droplet  
in ~@ (see ref. I l)  and enter into 8 d  (see Scheme 5.14). 

t*--3 

L'--9 I I 
I I 

1 I 
I I 

II 
Scheme 5.14 
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To conclude our  preliminary discussion, we want to say that the 
property of Q(D*, D*)  of being the minimal supercritical s tandard octagon 
can be expressed by the fact that L* is the minimal value of L for which 

H(S~.~)  - H(QL+ t.L) = E(L)  > 2 J -  h 

Remember that during the growth up to the protocritical droplet, described 
by d ~('), we had 

H( S~,~ ) - H(QL + LL) < 2 J - -  h 

as indicated in Scheme 5.8. 
Let us now start with the formal definition of 8. Given tr ~ zd and 

tce /~  to be fixed later, we define 

6~(~) = {tro = tr, r , = to} (5.5) G, ft" 

Given t,. ~ I~, we set 

d~l~") = {tr, = - 1 ,  0 ~< t ~< t,.} (5.6) 

Now consider the sequence of clusters ~ ..... )7, 2 specified in Scheme 5.1. We 
define 

& ( ~ ) =  { , to  = - 1 ,  cr, = ? ,  ..... ~r,2 = ~,_,}  (5.7) 

We recall that the energy is strictly increasing from - 1  to ?~2; indeed, 
we have 

H ( ~  ) - H( - 1 ) = 4 J -  4 K -  h, 

H(?3) - H(y2) = 2 J -  h - 2K, 

H(975) - n(~4) = 2 J -  2 K -  h, 

n ( ) 7 7 )  - -  H ( T 6 )  = 2 K -  h, 

H ( T 9 )  - -  H(~s) = 2 J -  4 K -  h, 

H()Tl i ) -- H(~;lo) = 2 J -  4 K -  h 

H(~2) - H(~7, ) = 2 J -  h 

H ( ~ 4 )  - H( f f3 )  = - h  + 2K 

H ( T 6 )  - -  H(~5) = 2 J -  4 K -  h 

H(?s) - H ( ) 7 7 )  = 2 K -  h 

H()71o ) - -  H ( ~ 9 )  = 2 K -  h 

(5.8) 

To present explicit definitions for the subsequent stages g('), 8 ('), d 't') 
of the event d~,,, we would like to use the general setup described in 
Section 3 based on the introduction of a set of auxiliary Markov chains. 

Thus, we have to specify an integer N, a sequence of  octagons Qt ..... QN, 
connected sets BI ..... BN, saddles $2 ..... SN+t ,  with S ieaBic~Bi+~,  

- i  i =  1 ..... N, SN+~ ~ c3BN, as well as resistance times t-~ and "descent" times I d.  
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We begin by saying that part of the octagons Q~ ..... QN entering in our 
construction will be standard [see Eq. (2.17)]. The other ones will be non- 
standard (some l~ will differ from 1"); further, the sets B~, i = 1 ..... N will be 
either (1) the basin of attraction ~(Q;)  of Qi [see Eq. (3.7)] if Q~ is not 
standard, or (2) the domain of attraction @(D~, D2) [see Eq. (3.10)] if 
Q = Q(Dt ,  D2) is a standard octagon. 

At the end of our construction we will consider the set ~ c~ f~ [cf. Eqs. 
(3.57), (3.54), (3.56), (3.48), and (3.53)]. It will contain the regular, the 
transient, and the standard stages. We have, with obvious meaning of the 
symbols, 

N = N, + N, + N~ 

Nr = 14(1" -  2), N , = 7 ,  N , = 2 [ L * - ( I * + 2 ) ]  (5.9) 

and 

Qt,  $2, Q2, $3 ..... QN, a N +  I 

I 13 14 0 13 14 _ yo, S ...... nlo)  _ 7 , , , $ 2 , 7 3  ..... 71. t , S / * - l , ~ t . j . ,  

,~(21 (~12) s  n ( O )  ~, (1)  t,-') ( t ) s 
I * , 1 " ,  ~ . 1 " . 1 " ,  ~ 1 " . 1 " ~  ~ - I *  + 1.1",  ~ 1 "  + 1, / * ,  ~ 1 " +  1 . / * ,  ~ 1 " +  1 . / * ,  

Q,o, eg'+ elo,+ 
l *  + 1 . / *  + I ' ~ / * "  + I . / *  + 1 ) 1 , / *  + I ' ~ / *  + I , / *  + 1 ' 2 2 *  + [ ' 

SI,) nlo) ~(,1 S~'2_ ,.L" 
/ * + 2 . / * +  I '  ~ff. 1"+2,1"+2' ~ / * + 2 , / * + 2 ' " "  - - 1 '  

S (ll (5.10) Q~2.L._ ,, L ' .L ' -  I 

-i -i corresponding to the different stages: Now we specify the times t,,, I d 

regular, transient, and standard. 
-i for the regular stages are denoted by [j.i, [S.  The times [i, t a 

They correspond, respectively, to the transitions 

. 101 7 1 J ' ~ S j  +', j = 0  ..... 13, Sj + ' ~ 7 1  j+' , ,  j = 0  ..... 12, S) 4 ;/+ 

for 1: 2<~l<~1"-1 .  They are given by 

t-~" = exp{ f l [ h ( l -  1)+ 6] } 

t-~" = exp{ f l [ h ( l -  2 )+  6] } 

{ S = e x p {  fl6 } 

with 6 to be chosen later. 
For the transient stage we have 

for j ~ 1 , 2 , 4 , 6  

for j =  1,2,4, 6 (5.11) 

t'~ = exp{ flEh(l* - 2) + 6] } 
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for the transitions 

( 2 )  . i', ( 3 ) 
I*.1" ----r 0 1 , . i ,  ~ 

further, 

for the transitions 

as well as 

for 

and 

for 

Moreover, we take 

for the transitions 

S ( l * )  --* n lo )  

499 

Q(I) ~ $ 1 2 1  ~ ( l )  ., _~ ~q2) 
/*  + 1 . /*  I * +  1.1"~ ~t~/* + I . t  + 1  ~ 1 " + 1 . 1 " + 1  

G--J-exp{/~[h(/*- 1 )+6]}  

QiO, . v , 2 ,  Ql~ l . ,-  I,~ 
I*,1" ~ O l * , l * ~  ~ S l *  + [ . / *  

[,~ = e x p { f l [ 2 h ( l *  - 1) - 2 ( K -  h)] + 6)} 

Q~O~+ ~ , , ,  Q~O~+ ~,,,, 
I , / * +  I " ~  ~ / *  + 1 , /*  + I ~ 2 , 1 " + 1  " ~  ~ 1 " +  2,1"  + I 

[J. = e x p { f l [ E ( l *  + 2)+ 6] } 

Q (O) ~ K , ( I )  
/ * + 2 . / * +  I ~ / *  + 2 . / * + 2  

{,~ = exp(fl&) 

I*.l* ~ 1 " . 1 " ~  ~ 1 " . 1 "  

Sll) .. QIP ~ '1 1 1  .....[~(1) 
I * +  1.1 -")" + 1 . / * '  ~ / * +  1 . / * +  I - ~ / * +  1.1" + I 

For all the other transitions of the transient stage we take 

t-~= exp { f l (2K-  h + 6)} 

and for any transition 

of the standard stage, 

Q(O) ..~ s { l )  
LI .  L2 LI �9 L2 

t-~ = exp{ f l [ E ( L ,  ^ L2) + 6] } 

822/75/3-4-10 
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Finally, for every descent time of the standard stage we take 

f~=exp{fl(2X-h + 6) } 

Now we are ready to present the definition of our event g,, 

= U U ~ 1 7 6  . + 1 2 ( ~ )  
I c = 1 tw = 1 

(5.12) 

We repeat that ..~ c~ ff is the event corresponding to the regular, transient, 
and standard stages defined as in Eq. (3.57) using the previously defined 
Q's, B's, S's [see Eq. (5.10)] and the corresponding times P/, fa i. It is 
immediate to verify inequality (3.62) in our case. Now, to get the basic 
estimate given by inequality (3.67), namely, in our case, 

P(..~) ~> exp{ - f l [H (~ ) -  H(S, ) + e] } (5.13) 

we first need to verify (3.66). For every downhill transition, namely for 
every transition of the regular case, as well as for the descent transitions of 
the transient case corresponding to i~=exp(fl6), this is an immediate 
consequence of the inequality 

IAIJ > e x p ( - e f l )  

valid for every e > 0 and fl sufficiently large [see (3.100)]. 
For the transitions 

S(2) i ) .  [ ')(o) K,(21 --~ l ) (o )  K,(1) ~ r 
I ' + 1 , / *  ~ 1 " + 1 , / * + 1 ,  ~ / * + 1 , 1 " + 1  ~ : = 1 " + 2 , / * + 1 ,  ~ 1 " + 2 , / * + 1  ~ 1 " + 2 , 1 " + 2  

of the transient stage, as well as for every transition of the standard case, 
we notice that from Sj in one step, with probability larger that 1/IAI we go 
to Bj+ i. Then Eq. (3.66) is an immediate consequence of the argument of 
the proof of Proposition 1. 

The inequality (3.65) is very easy to deduce by remarking that 
Qj ~ Sj+l is always an uphill single-spin-flip transition with the exception 
of the first part of the transient stage, QI~ ~ S12.!;.. In this last case it is 
easy to prove Eq. (3.65) by using a trial event with the resistance time of 
the order exp{fl[h(l* - 2) + 6] } in Q}"I;" exploited in the usual way. We 
leave the details to the reader. 
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For all the other cases that, we repeat, are single-spin-flip uphill trans- 
itions, the lower bound given by (3.65) is immediate. 

To get the equation of the form (3.59) we proceed as in the proof of 
Proposition 1. Namely, we prove condition (CI) 

there exists C > 0  such that P(fq~)<exp( -e  ct~) (5.14) 

by introducing, for every j =  1 ..... N, certain events , ~  and times 7~ satis- 
fying conditions (3.98) and (3.99). 

To this end, we observe that for every nonstandard (subcritical) 
octagon Qj appearing in c~ the corresponding Bj is just the usual basin of 
attraction and we can introduce the event ~$ in the following way: 

1. First, we pass to Qj via a descent path in a time of order To. [For  
every e > 0 and f sufficiently large the corresponding probability is larger 
than exp( - eft).] 

2. Then we pass to the minimal saddle S in OBj (corresponding to the 
shrinking mechanism, since Q i is subcritical) by a sequence of corner 
erosions. 

The corresponding probability estimate is like (3.65) with a proper 
choice of e. 

Otherwise, for the cases of standard octagons (appearing both in 
the transient and in the standard stages) we take Bj=~(L~  + 2 ( l * - 1 ) ,  
L2 + 2(l* - 1 )) for the domain of attraction. The time 7[ can be taken as 
exp{fl[E(L~ ^ L 2 ) + e ] }  and the escape event ~ is just the shrinking 
event g~, constructed in the proof of Proposition 1. 

Now, it is easy to see that, for every sufficiently small ~ > 0  and f 
sufficiently large, if 

[ , , . = e x p { f [ E ( L * - l ) + 6 ] } ,  8 > 0  

then 

P ( g l - ' ~ ' ) ; g " ) > ~ e x p { f [ E ( L * - l ) - H ( ~ , , ) + H ( - l _ ) - e ] }  (5.15) 

Moreover, from Propositions 1-3 it follows that for every sufficiently small 
e and fl sufficiently large, once 

[,. = [,,. = exp{fl[E(L* - 1) + 6] } 
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then 

P(~4) >1 exp(--fie) (5.16) 

From (5.12)-(5.14), (3.67), (5.15), and (5.16) it follows that 

P(g`')/> exp{//[E(L* - 1 ) + H ( ~ )  - H( - 1 ) - e] } 

for all sufficiently small e and/~ sufficiently large. 
Finally, from (5.2), (5.3), and (5.15) we get (5.1). 
Describing the event g, we actually defined an e-typical path appearing 

in the statement of Theorem 3. 
The only difference is that while in the definition of g`" we considered 

a very particular sequence of configurations (for example, all concerned 
octagons are centered), defining the set q/~ of all e-typical paths we can be 
slightly more flexible and allow also droplets of different positions and 
orientations. 

Namely, an e-typical path describes the typical way followed by our 
process starting from - 1  to form a critical nucleus and then to go to + 1. 
It contains, in particular, the stages that we have described when defining 
our trial event g~ except for the initial contraction and waiting stages. In 
other words an e-typical path will pass, initially, through the embryonal, 
regular, transient, and standard stages, spending, in the appropriate basins 
or domains of attraction, suitable intervals of time (resistance times). 

Then, after reaching the set of global saddles (protocritical droplets 
in ~ )  a new stage starts that we call supercritical: we pass from ~ to + 1 
through a suitable sequence of growing standard octagons with proper 
resistance times. 

The embryonal stage is uphill; the regular, transient, and standard 
stages are uphill in average and, finally, the supercritical stage is downhill 
in average. 

The first (subcritical) portions (embryonal, regular, transient, and 
standard) of an e-typical path will involve notions generalizing the ones 
already seen in the definition of the event ga. Embryonal, regular, transient, 
and standard stages in 8`" are strictly related to a particular example, with 
a particular choice of locations and orientations, of the corresponding ones 
in ql~. Namely, the generalization in q/~ with respect to g~ is only related to 
geometrical transformations such as translations, rotations, or reflections 
with respect to some lattice axes of the corresponding clusters, octagons, 
and standard octagons involved in 8,,. The family of sequences of 11 clusters 
taking part in the embryonal stage of an ~-typical path (sequentially visited 
in 11 steps) will be specified in great detail. Then, assigning the regular, 
transient, and standard stages, similarly to what we did in the definition 
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of g,,  will consist in specifying a set of sequences of octagons Q~ ..... QN+ 
with QI = Q(2), QN+ l = Q(D* ,  D*)  = critical nucleus, connected regions 
Bl ..... BN+I with B i ~ Q i ,  saddles S,_ ..... SN+I  with S i + l E B ~ w B i +  1, and 
resistance times (see below). 

Further, we have N = N r +  N , + N s ,  with Nr, N,, and N s given in 
Eq. (5.9) (the numbers of octagons in any sequence in the concerned stage 
are exactly the same as the numbers of the corresponding ones in g~). 

Then, after Q ( D * , D * )  comes the supercritical stage QN+t ..... 
QN + 2(M- O'I, +1 ,  with the corresponding BN + I ,..., BN + 2IM- O.I, SN+2,..., 
SN + zig - O'), and resistance times. 

The regular stage and part of the transient stage will involve non- 
standard octagons. Parts of the transient, standard, and supercritical stages 
will involve standard octagons. In the definitions introducing og,, during 
the evolution along a typical path we are less and less specific in the follow- 
ing sense: at the very beginning we assign a class of sequences of clusters 
[no resistance times up to Q(2)], then, in the regular stage and part of the 
transient stage, we specify a class of nonstandard octagons (without 
specifying the sequences of nonoctagonal clusters in between). Subse- 
quently (in part of the transient stage and in the standard stage) we will be 
able to specify only a class of sequences of standard octagons (without 
specifying the sequences of nonstandard octagons in between). Finally, in 
the supercritical stage, we will not even be able to specify a precise class of 
sequences of standard octagons and much larger fluctuations have to be 
allowed. We can say that, as the time goes on, our tube of trajectories 
becomes less and less narrow: it will correspond to the maximum possible 
specification compatible with an almost full probability estimate. 

Now let us start with the detailed definitions. 
The first part of the ~. ,  called embryonal,  is given by the set of all 

paths ( a t = y t  ..... t r ~ = y t t  ), where (?l ..... ~t~) is a generic sequence of 
connected clusters with (i) ~,j given by a unit square; Yit given by the 
saddle configuration ~ll of Scheme 5.1 arbitrarily located and oriented [the 
droplet Y~t can go downhill to Q(2) by a single spin flip]; (ii) ~j obtained 
from yj_  ~ by adding a unit square touching it and, in this way, increasing 
the energy without bypassing the energy level of " ~ t ) : H ( y y ) > H ( T j _ l ) ,  

H(Tj)  < H(~II ), j = 2 ..... 11. 
It is clear by inspection that, with the rule (ii), starting from Yt, after 

11 steps we always end up in ~,~. 
An example of a sequence implementing the characteristics of the 

embryonal stage is given in Scheme 5.1. 
Now, for the definition of the subsequent stages we have to define, 

preliminarily, the Q~, B~, and St. 
As in 8~, for all i =  1 ..... N + 2 ( M - D * )  we take B ~ = ~ ( Q 3 =  basin of 
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attraction of Qi if Q~ is a nonstandard octagon and B;=@(D~, D2)= 
extended domain of attraction of Qi if Qi is a standard octagon. The 
saddles Si~ ~3Bin B;+ I, i=  1 ..... N +  2 ( M -  D*), and, for i =  2 ..... N, Sie {set 
of minimal saddles in OB~}; whereas for i = N + I  ..... N + 2 ( M - D * ) ,  
Sie { set of minimal saddles in aB i + 1 }. 

Then the B~ and the Si are determined once the Q~ are given. Any 
sequence Q t ..... Q N + z ig-o-I  corresponding to a typical path will be called 
a typical sequence of octagons (it will follow the embryonal stage). The set 
of all sequences will be called a typical tube and will be denoted by ~'~. 

Now let Vi == - V(Q A be given by: 

(i) Vi = hZ#j with L~j --- mini= 1.....8 ~ (see definitions before 
Lemma 3.5), whenever Qi is a nonstandard octagon. 

(ii) V~= E(L), whenever Qi is a standard octagon with 
min{Ll(OA, z2(oi) } --- t ,  with I* <~ L <<. L * - 1. 

(iii) V ~ = 2 J - 4 K - h ,  whenever Q~ is standard and supercritical, 
L = m i n { L l ( a A ,  L2(Q;) } >~L*. 

A path tr, will be an e-typical path if, after the embryonal stage it will 
visit sequentially QI e Q(2) ..... QN+2tM-o-i in the following way: 

Starting from Qi, it will spend some time ti inside Bi. 
Then, after passing through Si+l, it will reach Q~+I for the first time. 

Calling t~ the time interval between first arrivals in Qi and Q~+I, we have 

exp{/~( V i -  e)} < ti < exp{/~( V, + e)} 

So, to conclude the definition of q/~., we only need to assign the typical 
tube of octagons. We start this definition by distinguishing the regular, 
transient, standard, and supercritical portions. 

The regular portion of the typical tube is denoted by y-c:~. Starting 
from Q(2), y-t:l contains the set of all the reverse of a sequence of canoni- 
cal contractions (see Section 3) from Q(3) to Q(2) and so on up to Q(I*) .  
The transient and standard portions Y'IJ~ and Y-I:~ of the typical tube are 
simply given by the set of sequences of octagons obtained by the set of 
sequences appearing in the definitions given above when introducing ~,, 
modulo translations and the obvious rotations and reflections (we do not 
enter into a detailed classification, leaving the easy exercise to the inter- 
ested reader). 

After getting SN+1~9 ~ the supercritical stage Y-~:"~ starts. 
It will consist of the set of sequences of standard octagons 
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Q(DI/I, r~ci}~ --2 J, j=1 ..... 2(M-D*), with the following monotonicity 

proper ty :  

e i ther  (D*/+ " ,  D ~  + " )  = (De/~ + 1, D~ j ' )  

o r  (DllJ+ ii, D(j+ 1)) = (D(iJ), DIgj)-1- !)  

P r o o f  o f  T h e o r e m  3. T h e o r e m  3 fol lows direct ly  by P ropos i t i ons  1-4 

and  the easy o b s e r v a t i o n  tha t  the e m b r y o n a l  pa th  is the reverse of  a 

downhi l l  sh r ink ing  s ta r t ing  f rom Y l~, via a s t r a igh t fo rward  a d a p t a t i o n  of  

the results  of  ref. 14 based  on  reversibi l i ty  of  the process  ( L e m m a s  2 - 4  and 

T h e o r e m  1 therein) .  
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